State Space Models

Matthieu Bloch

Thursday September 29, 2022

Today in ECE 6555

  • Don't forget
    • Midterm Exam coming up on Thursday October 6, 2022
      • In class - 75 minutes
      • Open notes (your notes, slides, problem set solutions - no textbook)
      • DL students: schedule within one week (official instruction through GTPE)
    • Problem Set 3 due Thursday October 13, 2022 on Gradescope
      • Only 3 problems
    • Make sure you start homework early and don't spend 30 hours
  • Last time
    • Computing innovation process through LDL decomposition and Gaussian elimination
    • This is messy!
  • Today's plan
    • State space model: often a more natural way to derive innovations
  • Questions?

Exponentially correlated process

  • The exponentially correlated process is a wide sense stationary process defined by an autocorrelation function of the form \[ \dotp{y_i}{y_j} \eqdef a^{\abs{i-j}} \qquad\forall i,j\qquad \textsf{for some } a\in(0;1) \]

  • The covariance matrix of the process is a Toeplitz matrix of the form \[ \matR_y =\left[\begin{array}{ccccc} 1&a&a^2&a^3&a^4\\ a&1&a&a^2&a^3\\ a^2&a&1&a&a^2\\ a^3&a^2&a&1&a\\ a^4&a^3&a^2&a&1\\ \end{array}\right] \]
  • Computing the innovation is tedious if we try to obtain the LDL decomposition of \(\matR_y\)
  • Is there a simpler way?

State Space Models: Motivation

  • Consider the linear stochastic differential equations \(\vecy_{i+1}-a \vecy_i=\vecu_i\) for \(i\geq 0\), \(a\in\bbR\)

    • Initial conditions \(\vecy_0\)
    • \(\vecu_i\) such that \(\dotp{\vecu_i}{\vecu_j}=\matQ_i\delta_{ij}\), \(\norm{\vecy_0}^2=\Pi_0\), \(\dotp{\vecu_i}{\vecy_0}=0\)
    • The process may be non-stationary
  • \(\forall i\geq j\) we have \(\dotp{\vecu_i}{\vecy_j}=0\). For \(i\geq 0\), if \(\Pi_i\eqdef \norm{\vecy_i}^2\) then \(\Pi_{i+1}=a^2\Pi_i+\matQ_i\)

  • In general the process is not stationary

  • If \(\matQ_i=\matQ\), \(\Pi_0 = \frac{\matQ}{1-a^2}\) with \(\abs{a}<1\), the process is stationary.

    • What happens in the scalar case for \(\matQ=1-a^2\)?
  • Innovations can be computed regardless of stationarity

  • The innovation of the process defined by the stochastic differential equation above is \(\vece_i=\vecu_i\) for \(i\geq 0\)

  • How general is such a approach?

Higher order models

  • An autoregressive process is defined by the stochastic equation \[ y_{i+1} = a_{0,i}y_i + a_{1,i} y_{i-1}+\cdots + a_{n-1,i}y_{i-n+1} + u_i\qquad \forall i\geq 0 \] where:
    • \(u_i\) is zero mean with \(\dotp{u_i}{u_j}=Q_i\delta_{i,j}\) \(\forall i \geq 0\)
    • \(y_{0},\cdots,y_{-n+1}\) zero mean with know covariance matrix \(\Pi_0\)
  • The autoregressive model can be represented as a simple order 1 recursion of the form \[ \vecx_{i+1} = \matF_i\vecx_i + \matG_i\vecu_i\qquad y_i =\matH_i\vecx_i \]

Higher order models

  • An autoregressive moving-average process is defined by the stochastic equation \[ y_{i+1} = a_{0}y_i + a_{1} y_{i-1}+\cdots + a_{n-1}y_{i-n+1} + b_0u_i + \cdots+b_{n-1}u_{i-n+1}\qquad \forall i\geq 0 \] where:
    • \(u_i\) is zero mean with \(\dotp{u_i}{u_j}=Q_i\delta_{i,j}\) \(\forall i \geq 0\)
    • \(y_{0},\cdots,y_{-n+1}\) zero mean with known covariance matrix \(\Pi_0\)
  • The autoregressive moving-average model can be represented as an order 1 recursion

Standard state space model

  • The standard state space model is of the form \[ \vecx_{i+1} = \matF_i\vecx_i + \matG_i\vecu_i\qquad \vecy_i = \matH_i \vecx_i + \vecv_i \] with known matrices \(\set{\matF_i,\matG_i,\matH_i}\) and \[ \dotp{\left[\begin{array}{c}\vecx_0\\\vecu_i\\\vecv_i\end{array}\right]}{\left[\begin{array}{c}\vecx_0\\\vecu_j\\\vecv_j\\1\end{array}\right]} \eqdef \left[\begin{array}{cccc}\Pi_0&0&0&0\\0&\matQ_i\delta_{ij}&\matS_i\delta_{ij}&0\\0&\matS_i^T\delta_{ij}&\matR_i\delta_{ij}&0\end{array}\right] \]

Standard state-space model: Properties

    • For \(i\geq j\) \(\dotp{\vecu_i}{\vecx_j}=0\) and \(\dotp{\vecv_i}{\vecx_j}=0\)
    • For \(i> j\) \(\dotp{\vecu_i}{\vecy_j}=0\) and \(\dotp{\vecv_i}{\vecy_j}=0\)
    • For $i= $ \(\dotp{\vecu_i}{\vecy_j}=\matS_i\) and \(\dotp{\vecv_i}{\vecy_j}=\matR_i\)
    • If \(\matF_i\) non singular, \(\dotp{\vecu_i}{\vecx_0}=0\) if and only if \(\forall i\geq 0\) \(\dotp{\vecu_i}{\vecx_i}=0\)
  • Let \(\dotp{\vecx_i}{\vecx_i}=\Pi_i\). Then \[ \forall i\geq 0\qquad \Pi_{i+1} = \matF_i\Pi_i\matF_i^T + \matG_i\matQ_i\matG_i^T \] Let \(\Phi(i,j)\eqdef \prod_{\ell=i-1}^j\matF_\ell\) for \(i>j\) and \(\Phi(i,i)=\matI\). Then \[ \dotp{\vecx_i}{\vecx_j} = \begin{cases}\Phi(i,j)\Pi_j\text{ for }i\geq j\\\Pi_i\Phi(j,i)^T\text{ for }i\leq j\end{cases} \] \[ \dotp{\vecy_i}{\vecy_j} = \begin{cases}\matH_i\Phi(i,j+1)\matN_j\text{ for }i> j\text{ with }\matN_i=\matF_i\Pi_i\matH_i^T+\matG_i\matS_i\\ \matR_i+\matH_i\Pi_i\matH_i^T\text{ for }i= j\\ \matN_i^T\Phi(j,i+1)^T\matH)j^T\text{ for }i< j\end{cases} \]