Linear Models

Matthieu Bloch

Tuesday September 13, 2022

Today in ECE 6555

  • Don't forget
    • Problem set 2 due Thursday September 22, 2022 on Gradescope
  • Announcements
  • Last time
    • Linear estimators
    • Geometric perspective on stochastic least squares
  • Today's plan
    • Linear models
    • Gauss Markov theorem
    • Sensor fusion
  • Questions?

Linear models

  • We can't say much more about LMSE without knowing more

  • Fortunately, many engineering problems problems impose more structure between \(\vecy\) and \(\vecx\)

  • A linear model is one in which \(\vecy=\matH\vecx+\vecv\) where:
    • \(\matH\in\bbR^{m\times n}\)
    • \(\vecv\) is zero mean an uncorrelated with \(\vecx\)
  • The LLSE of \(\vecx\) given \(\vecy\) in a linear mode (assuming \(\matR_\vecx\) and \(\matR_\vecv\) non singular) is \(\hat{\vecx}=\matK_0\vecy\) with \[ \matK_0=\matR_\vecx\matH^T(\matH\matR_\vecx\matH^\intercal + \matR_\vecv)^{-1} = (\matR_\vecx^{-1}+\matH^T\matR_\vecv^{-1}\matH)^{-1}\matH^T\matR_\vecv^{-1} \] \[ \matP_\vecx = \matR_\vecx -\matR_\vecx\matH^T(\matH\matR_\vecx\matH^T+\matR_\vecv)^{-1}\matH\matR_\vecx = (\matR_\vecx^{-1}+\matH^T\matR_\vecv^{-1}\matH)^{-1} \]

  • In particular note that \(\matP_{\vecx}^{-1}\hat{\vecx} = \matH^T\matR_\vecv^{-1}\vecy\) (independent of \(\matR_\vecx\))

Gauss-Markov Theorem

  • Sometimes we are interested in characterizing a deterministic quantity \(\vecx\)

  • Consider the linear model \(\vecy=\matH\vecx+\vecv\) where
    • \(\matH\) is full column rank
    • \(\vecx\in\bbR^n\) is a deterministic parameter
    • \(\vecv\in\bbR^m\) is zero mean with covariance matrix \(\matR_\vecv=\matI\)

    Then \(\hat{\vecx}_\infty\eqdef (\matH^T\matH)^{-1}\matH^T\vecy\) is the optimal unbiased llmse of \(\vecx\)

  • Notes:

    • This looks like the LLSE for linear models with \(\matR_\vecx = \alpha \matI\) and \(\alpha\to\infty\)
    • What if \(\matR_\vecv\succ 0\) but \(\matR_{\vecv}\neq \matI\)?
    • We can view the result of the Gauss-Markov theorem as the solution of the optimization \[ \min_{\matK} \matK\matK^T\textsf{ s.t. }\matK\matH=\matI \]

Combining estimators

  • Consider a zero mean random variable \(\vecx\in\bbR^n\) (\(\matR_\vecx\succ 0\)) observed through \(\vecy_1\) and \(\vecy_2\) according to \[ \vecy_1 = \matH_1+\vecv_1\qquad \vecy_2 = \matH_2+\vecv_2 \] with \((\vecx,\vecv_1,\vecv_2)\) mutually independent and zero mean.
    • Let \(\hat{\vecx}_1\) be the LLSE of \(\vecx\) from \(\vecy_1\) with error covariance matrix \(\matP_1\)
    • Let \(\hat{\vecx}_2\) be the LLSE of \(\vecx\) from \(\vecy_2\) with error covariance matrix \(\matP_2\)

    Then \(\matP^{-1}\vecx = \matP_1^{-1}\hat{\vecx}_1+\matP_2^{-1}\hat{\vecx}_2\) with \(\matP^{-1} = \matP_1^{-1}+\matP_2^{-1}-\matR_\vecx^{-1}\)

Correspondence with deterministic least squares

  • Consider the deterministic least square optimization \[ \min_{\vecx} (\vecx-\vecx_0)^T\Pi_0^{-1}(\vecx-\vecx_0) + \norm[W]{\vecy-\matH\vecx}^2 \]

  • Consider the linear stochastic least square optimization for the linear model \(\vecy=\matH\vecx+\vecv\)

  • Can we draw parallels between the two problems?