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Bias-Variance Tradeoff

Matthieu R. Bloch

We have formalized the problem of supervised learning as finding a function (or hypothesis)
h in a given set H that minimizes the true risk R(h). In the context of classification we hope to
approximate the optimal Bayes classifier while in the context of regression we hope to approximate
the true underlying function. We have already seen that the choice of H must strike a delicate
tradeoff between two desirable characteristics:

• a more complex H leads to better chance of approximating ideal classifier/function;

• a less complex H leads to better chance of generalizing to unseen data.

Regularization plays a similar role by biasing answer away from complex functions. This is particu-
larly crucial for regression in which the complexity must be carefully limited to avoid overfitting.

In the context of classification, we have already seen that the tradeoff can be precisely quantified
in terms of the VC generalization bound, which takes the form

R(h) ⩽ R̂N (h) + ϵ(H, N) with high probability.

We now develop an alternative method to quantify the tradeoff called the bias-variance decomposition
which takes the form

R(h) ≈ bias2 + variance.

Thererin, the bias captures how well H can approximate the true h∗, while the variance captures
how likely we are to pick a good h ∈ H. This approach generalizes more easily to regression than
the VC dimension approach developed for classification.

1 Setup for bias-variance decomposition analysis

We formalize the bias-variance tradeoff assuming the following:

• f : Rd → R is the unknown target function that we are trying to learn;

• D = {(xi, yi)}Ni=1 is the dataset, where (xi, yi) are independent and identically distributed
(i.i.d.); specifically, xi ∈ Rd and yi = f(xi) + εi ∈ R, where εi is a zero-mean noise random
variable independent of xi with variance σ2

ε (for instance ϵi ∼ N (0, σ2
ε));

• ĥD : Rd → R is our choice of function in H, selected using D;

• The performance of ĥD is measured in terms of themean squared errorR(ĥD) = EXY

(
(ĥD(X)− Y )2

)
;

Note that the random variables (X,Y ) denote the data at testing and should not be confused with
the random variable D representing the training data.
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Lemma 1.1 (Bias-variance decomposition ).

ED

(
R(ĥD)

)
= σ2

ε + EX

(
Var

(
ĥD(X)

)
|X

)
+ EX

(
Bias(ĥD(X))2|X

)
with

Var
(
ĥD(X)

)
≜ ED

((
ĥD(X)− ED

(
ĥD(X)

))2
)

Bias(ĥD(X)) ≜ ED

(
ĥD(X)

)
− f(X)

Proof. For clarity, set h̄(X) ≜ ED

(
ĥD(X)

)
. Then,

ED

(
R(ĥD)

)
= ED

(
EXY

(
(ĥD(X)− Y )2

))
(1)

= ED

(
EXε

(
(ĥD(X)− f(X)− ε)2

))
(2)

= ED

(
EXε

(
(ĥD(X)− h̄(X) + h̄(X)− f(X)− ε)2

))
(3)

= EDEXEε

[
(ĥD(X)− h̄(X))2 + (h̄(X)− f(X))2 + ε2

+2(ĥD(X)− h̄(X))(h̄(X)− f(X))− 2(ĥD(X)− h̄(X))ε

−2(h̄(X)− f(X))ε
]

(4)

Note that in (4) we have used the fact that D, X, and ε are independent. Notice that

EDEXEε

[
(ĥD(X)− h̄(X))2

]
≜ EX

(
Var

(
ĥD(X)|X

))
(5)

EDEXEε

[
(h̄(X)− f(X))2

]
≜ EX

(
Bias(ĥD(X))2

)
(6)

EDEXEε

[
ε2
]
≜ σ2

ε . (7)

The last three terms turn out to be zero since

EDEX

[
(ĥD(X)− h̄(X))(h̄(X)− f(X))

]
= EX

[
(ED

(
ĥD(X)

)
− h̄(X))(h̄(X)− f(X))

]
= 0 (8)

and

EDEXEε

[
(ĥD(X)− h̄(X))ε

]
= EX

(
ED

(
ĥD(X)− h̄(X)

))
Eε(ε) = 0 (9)

EDEXEε

[
(h̄(X)− f(X))ε

]
= EX

(
h̄(X)− f(X)

)
Eε(ε) = 0. (10)

■

2 Intuition behind the bias-variance tradeoff

The intuition behind the bias-variance tradeoff is illustrated in Fig. 1. The gray area around the true
function f represents the variance of the perception of the true resulting from the noisy samples
that we obtain. The model space represent, for instance, all the linear models while the regularized
model represents the regularized models. The blue area represents the variance of the model while
the orange area represents the variance of the regularized model. The regularized model offers a
smaller variance at the expense of an increased bias.
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Figure 1: Illustration of bias-variance tradeoff adapted from [1, Figure 7.2]
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