
ECE 6254 - Summer 2020 - Lecture 16 v1.0 - revised July 21, 2020

Dimensionality Reduction

Matthieu R. Bloch

Most machine learning algorithms suffer for what is known as the curse of dimensionality. This
terminology refers to the problem that generalization often becomes much worse as the dimension
of the feature space increases. The exact influence of dimension depends on the specific application
and the specific algorithms considered but one trace the cause of problems to the fact that volume
increases significantly with dimension. This translates into requiring exponentially more data for
the results to be reliable and “cover” a volume of space properly with sample points. When the
amount of data is not sufficient in high-dimension, the intuition developed in low dimension can
be misleading, as neighboring points (in the sense of being the closest) are not necessarily local
anymore. The following example illustrates this point more quantitatively.

Example 0.1. Consider N points D = {xi}Ni=1 sampled independently uniformly in a p-dimensional
unit ball. For every xi ∈ D, let ℓi ≜ ∥xi∥2 be the distance of the i-th point to the unit ball. We are
interested in computing the median distance dmed from the origin to the closest point in D. Note that for
any d ∈ R+,

P(∀i ∈ J1, NK ℓi ⩾ d) =

N∏
i=1

P(ℓi ⩾ d) (1)

= P(ℓ1 ⩾ d)
N (2)

= (1− P(ℓ1 < d))N (3)
= (1− dp)N , (4)

where we have used the fact that the points are sampled independently in (1), identically in (2), and
uniformly in (4). By definition of dmed, we have

P
(
min
i

ℓi ⩾ dmed

)
= P(∀i ∈ J1, NK ℓi ⩾ dmed) =

1

2
, (5)

so that

dmed =

(
1−

(
1

2

) 1
N

) 1
p

→ 1as p → ∞. (6)

Therefore, as p gets large, most points are closer to the shell of the unit ball than to the origin. This suggests
that the K- nearest neighbors of the origin can actually be quite far.

Dimensionality reduction aims at mitigating the curse of dimensionality by explicitly reducing
the dimension of feature vectors. Starting from a dataset of N feature vectors xi ∈ Rd, with d
potentially large, the objective is to transform inputs to new feature vectors in x′i ∈ Rk with k ≪
d while minimizing the information loss. If successful, dimensionality reduction often improves
computational efficiency and helps prevent overfitting, especially when N ≪ d.

Dimensionality reduction techniques are categorized depending on how they approach the prob-
lem. How is information loss measured? Is the approach supervised or unspervised? Is the map

1

ECE 6254 - Summer 2020 - Lecture 16 v1.0 - revised July 21, 2020

x → x′ linear or non-linear? Most importantly, one distinguishes whether features are selected, i.e.,
only a subset of the components of the original feature vector are retained, or extracted, i.e., new
components are created. As an illustration compare the vectors

x′select =

 x1

x6

x32

 vs x′extract =

 ϕ1(x)
ϕ2(x)
ϕ3(x)

 .

We will discuss filtering, which is a supervised selection method, and Principal Component Anal-
ysis (PCA), which is an unsupervised extraction method.

1 Filtering

The objective of filtering is to perform feature selection by eliminating irrelevant features. Features
are ranked by order of importance and the best k features are retrained, where the importance is
related to the ability of the feature of predicting the associate label y in supervised learning. The
objective of this approach is to reduce computational complexity when running learning algorithms,
regularize, and retain the interpretability of the feature vectors with reduced dimensions. The main
benefit of this approach is that it is reasonably fast, but the k best features is usually not the same
thing as the best set of k features.

Ranking for filtering in classification Many possibilities exist to assign a rank r(j) to a feature j.
We list here only a few standard ones.

• Misclassification rate: r(j) ≜ 1
N

∑N
i=1 1{yi ̸= θ(xi,j)} for some classifier θj , which explicitly

tries to classify using a single feature.

• Two-sample t-test statistics: r(j) ≜
∣∣∣x(+)

j −x
(−)
j

∣∣∣
s/

√
n

where x±
j are the class means for feature j

and s is the pooled sample standard deviation.

• Margin: for separable data, compute r(j) ≜ mink:yk=+1,ℓ:yℓ=−1 |xk,j − xl,j |; for non-
separable data, one can use order statistics instead.

Ranking for filtering in regression Again, there are many possibilities to rank features. Popular
choice include

• Correlation coefficient: r(j) ≜ |ρ(j)| with

ρ(j) ≜ Cov(xj , y)√
Var(xj)Var(y)

(7)

where the covariance and variance are computed with sample estimates

• Mutual information: r(j) ≜ I(xj ; y) where

I(X;Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(8)

measures how much x tells us about y and the probabilities are estimated from the data.

2

ECE 6254 - Summer 2020 - Lecture 16 v1.0 - revised July 21, 2020

Ranking is a valid approach but its main drawback is that it can lead to the selection of highly
redundant features. For instance, if the best feature were duplicated, it would be selected twice. One
solution to circumvent the issue is to resort to incremental maximization and choose feature sequen-
tially, keeping in mind those previously selected. For instance, assume that features xj1 , · · · , xjk−1

have been previously selected. The kth feature with incremental selection and mutual information
would be chosen to maximize

I(xjk ; y)− β

k−1∑
i=1

I(xjk ;xji). (9)

Intuitively, this procedure attempts to find the best feature that is the least redundant with all pre-
viously selected features.

Incremental maximization mitigates the issue of selecting redundant features, but it does not
fully address the inability of filtering to capture interactions between features. Two solutions exist to
go beyond filtering.

• Wrapper methods, which measure the performance of subsets of features for the learning algo-
rithm combined with a search across all subsets. Such methods capture the interactions of
features but can be painfully slow. Common examples include forward selection, backward
elimination.

• Embedded methods, which use learning algorithms that incorporate a joint feature selection
as part of the model fitting. A common example is LASSO regression, which performs ℓ1
regularization and adds a penalty to non zero coefficients.

2 Principal Component Analysis

Principal Component Analysis (PCA) is a linear unsupervised feature extraction method based on
the sum of squared error to reduce dimension from Rd to Rk (k ⩽ d). The idea is to approximate
the data as xi ≈ µ+ Aθi with µ ∈ Rd, θi ∈ Rk, and A ∈ Rd×k with orthonormal columns.

Definition 2.1. Principal Component Analysis consists in solving the problem

argmin
µ,A:A⊺A=I,θi

N∑
i=1

∥xi − µ− Aθi∥22 (10)

This problem happens to have a closed form solution. The difficult part of this optimization
problem is finding A. Given A, it is relatively easy to find θi and µ. We develop the characterization
of PCA through a series of three lemmas.

Lemma 2.2. Assume that µ and A are fixed. Then, θi = A⊺(xi − µ).

Proof. For fixed µ and A, the optimization problem in (10) is a separable least-square problem for
which we identified the solution

θi = (A⊺A)−1A⊺(xi − µ) = A⊺(xi − µ), (11)

since the columns of A are orthonormal and A⊺A = I ■

Lemma 2.3. Assume A is fixed and θi = A⊺(xi − µ). Then, µ = 1
N

∑N
i=1 xi.

3

ECE 6254 - Summer 2020 - Lecture 16 v1.0 - revised July 21, 2020

Proof. Substituting the optimal θ identified in Lemma 2.3 into (10), we obtain

N∑
i=1

∥xi − µ− Aθi∥22 =

N∑
i=1

∥xi − µ− AA⊺(xi − µ)∥22 (12)

=

N∑
i=1

∥(I− AA⊺)(xi − µ)∥22 (13)

=

N∑
i=1

(xi − µ)⊺(I− AA⊺)⊺(I− AA⊺)(xi − µ) (14)

=

N∑
i=1

(xi − µ)⊺(I− AA⊺)(xi − µ) (15)

where we have used the fact that (I− AA⊺) is a projector since (I− AA⊺)⊺ = (I− AA⊺) and

(I− AA⊺)(I− AA⊺) = I− AA⊺. (16)

Using the stationarity condition with respect to µ for (15), we obtain

0 = −2

N∑
i=1

(I− AA⊺)(xi − µ) = −2(I− AA⊺)

(
N∑
i=1

xi −Nµ

)
. (17)

One (but not unique) solution is µ = 1
N

∑N
i=1 xi. ■

Lemma 2.4. One possible choice of A is A = [u1, · · · , uk] where ui’s are the eigenvectors corresponding
to the k largest eigenvalues of S ≜

∑N
i=1(xi − µ)(xi − µ)⊺

Proof. The proof proceeds in three distinct steps. First, we assume without loss of generality that
µ = 0 so that the PCA problem after using Lemma 2.2 reduces to

argmin
A:A⊺A=I

N∑
i=1

∥(I− AA⊺)xi∥22 = argmin
A:A⊺A=I

N∑
i=1

x⊺i (I− AA⊺)⊺(I− AA⊺)xi (18)

= argmin
A:A⊺A=I

N∑
i=1

x⊺i (I− AA⊺)xi (19)

= argmax
A:A⊺A=I

N∑
i=1

x⊺i AA
⊺xi, (20)

where we have used again the fact that I − AA⊺ is a projector. Now, since for any v ∈ Rd we have
∥v∥22 = tr (vv⊺), we obtain

x⊺i AA
⊺xi = ∥A⊺xi∥22 = tr (A⊺xix

⊺
i A) . (21)

Upon defining S ≜
∑N

i=1 xix
⊺
i , the PCA optimization problem reduces to

argmax
A:A⊺A=I

tr (A⊺SA) . (22)

4

ECE 6254 - Summer 2020 - Lecture 16 v1.0 - revised July 21, 2020

Next, we rewrite the optimization problem as a linear program. We use the fact that S is sym-
metric semidefinite positive and the spectral theorem to write S = UΛU⊺ with U ∈ Rd×d an
orthonormal matrix and Λ a diagonal matrix with elements λ1 ⩾ λ2 ⩾ · · · ⩾ λd ⩾ 0. Then,

tr (A⊺SA) = tr (A⊺UΛU⊺A) = tr (W⊺ΛW) , (23)

where we have defined W = U⊺A ∈ Rd×k. Note that W⊺W = A⊺UU⊺A = I, so that the
columns of W are orthonormal. Upon writing W = [wij]i∈J1,dK,j∈J1,kK explicitly in terms of its k
orthonormal column vectors in Rd as

W =

 | | |
w1 w2 · · · wk

| | |

 , (24)

we obtain

tr (W⊺ΛW) =

k∑
j=1

w⊺
jΛwj =

k∑
j=1

d∑
i=1

w2
ijλi ≜

d∑
i=1

hiλi (25)

where we have defined hi ≜
∑k

j=1 w
2
ij . Note that, by definition hi ⩾ 0 for i ∈ J1, dK. In addition,

d∑
i=1

hi =

k∑
j=1

d∑
i=1

w2
ij =

k∑
j=1

w⊺
jwj = k (26)

since ∥wj∥2 = 1. Finally we note that we can augment the matrix W with d − k orthonormal
vectors to form an orthonormal basis of Rd and write

V =
[
W W0

]
with W0 ∈ Rd×d−k s.t. W⊺

0W0 = Id−k and W⊺W0 = 0. (27)

Since V is then an orthonormal matrix, we also have VV⊺ = I so that Consequently,

hi =

k∑
j=1

w2
i,j ⩽

d∑
j=1

v2i,j = 1. (28)

Therefore, our PCA optimization problem in (10) is equivalent to the linear program

max
hi∈[0,1]:

∑d
i=1 hi=k

d∑
i=1

hiλi. (29)

Finally, we solve this linear program explicitly. Recall that the eigenvalues satisfy λ1 ⩾ · · · ⩾ λd,
so that the solution of the linear program consists in allocating the highest possible coefficient in
front of the highest eigenvalues. In other words,

hi =

{
1 if i ∈ J1, kK
0 otherwise

(30)

Ultimately, we are interested in a matrix A. Since hi ≜
∑k

j=1 w
2
ij , one possible choice of W leading

to optimal coefficients hi’s is

W =

[
Ik
0

]
leading to A = UW =

 | |
u1 · · · uk
| |

 . (31)

■

5

	Filtering
	Principal Component Analysis

