
ECE 6254 - Summer 2020 - Lecture 1 v1.0 - revised May 11, 2020

Supervised Learning

Matthieu R. Bloch

1 A framework for supervised learning

One of the main objectives of the course is to understand why and how we can learn. Although we
all have an intuitive understanding of what learning means, making clear mathematical statements
requires us to explicitly specify the components of a learning model. Without such clear statements,
it would be hard to reason about learning and we would not be able to design an engineering
methodology.

Definition 1.1. Assume that there exists an unknown function f : Rd → R that takes a feature vector
x as input and outputs a label y = f(x). The supervised learning problem consists of the following
components.

1. A dataset D ≜ {(x1, y1), · · · , (xN , yN )} comprised of N pairs of feature vectors xi and their
associated labels yi. Our goal is to use D to infer something about f .

• {xi}Ni=1 are assumed to be drawn independent and identically distributed (i.i.d.) from an
unknown probability distribution Px on Rd

• {yi}Ni=1 are the corresponding labels, which are assumed to be drawn according to an un-
known conditional distribution Py|x on R.

2. A set of hypotheses H containing candidate functions that could explain what f is.

3. A loss function ℓ : Y ×Y → R+ : (ŷ, y) 7→ ℓ(ŷ, y) capturing the cost of making a prediction ŷ
instead of y.

4. An algorithm ALG to find the h ∈ H that best explains f in terms of minimizing the cost incurred
by h.

There are many subtle aspects behind this definition that we now discuss in details.
The assumption that f exists is not innocent. If you do not believe that there exists a magic

formula to distinguish pictures of cats from pictures of dogs then there is nothing to learn! Another
implicit assumption is also that we cannot derive f from first principles in mathematics and physics,
which we shall call a top-down approach. If we could infer f using a top-down approach, there
would be no need to learn f from data. Most traditional engineering disciplines follow a top-down
approach and this often works extremely well. Machine learning is only useful if you face a situation
in which the function f is too complicated to be derived from first principles. Assuming this is the
case, machine learning takes a bottom-up approach and exploits data to infer what f could be.

The dataset provides examples of what the function f computes, and we hope to identify f
through these examples. The fact that the data consists of feature vectors together with a label
is what makes the learning problem supervised. Acquiring data is sometimes costly and difficult,
therefore a related question that we will try to answer is how much data is required to learn. Having
data is not enough to talk about learning in a mathematical way. Given a dataset {(xi, yi)}Ni=1, one
can come up with infinitely many different ways of explaining how labels are associated to the feature

1



ECE 6254 - Summer 2020 - Lecture 1 v1.0 - revised May 11, 2020

vectors. Said differently, there could be infinitely many possible ways of explaining how the labels
are obtained. The key insight to circumvent this problem is to assume the existence of an unknown
distribution Px from which the feature vectors are sampled i.i.d.. Note that we only assume that
Px exists and not that it is known; however, the existence of a probability distribution will allow
us to make statements about what function f is probable. Saying that the dataset consists of i.i.d.
samples is a means of saying that samples have to be representative examples of what f predicts. For
instance, it would be hard to distinguish cats from dogs if all our examples consisted of pictures of
the same cat.

We also assume that the labels are generated from the feature vectors according to a conditional
distribution (ProbabilityMass Function (PMF) or Probability Density Function (PDF)) Py|x. There
is no loss of generality since this includes situations in which the labels are deterministic functions
of the feature vectors. However, by allowing the labels to be a randommap of the feature vectors, we
allow the possibility that i) we could observe noisy labels of the form f(x)+n where n is some noise;
or ii) that there might not be absolutely true labels because some samples are inherently confusing.
Note that the roles of Py|x and Px are different in our model.

Assuming that we try to explain f by picking a candidate h in a set H does not in principle
constitute a loss of generality. In principle, we could pick H to consists of all possible functions in
the universe. However, we shall see that there is a compromise to be made when choosing the set
H. For now suffice to say thatH should be rich enough to explain in part what f computes but not
so large that we could memorize the dataset. In practice, H could be a the set of neural nets with a
specific architecture (number of layers, neurons, activation functions, etc.).

Our model also includes a loss function ℓ(·, ·), which is crucial to measure the performance of a
candidate function h ∈ H through ℓ(h(x), y). Without a cost function, we cannot quantify how
great or how poor this specific choice of h is. Our model, however, does not dictate which loss
function to choose. We will see various choices of loss functions throughout this class, and which
one to use is ultimately application dependent.

Finally, given a dataset, a set of hypotheses, and a loss function, one needs an algorithm to select
a good (ideally the best) function h ∈ H to explain f . We clarify what we mean by “good” in the
next section. For now, suffice to say that the algorithm is the machinery that learns f from the
dataset.

2 Generalization and empirical risk

An important aspect of learning is that it should be different from memorizing the dataset. Said
differently, our goal is not to find h ∈ H that accurately assigns values to elements of D but to find
h ∈ H that accurately predicts values of unseen samples.

Consider a hypothesis h ∈ H that we somehow learned from the dataset. To quantify the quality
of the choice h, we can compute the empirical risk (a.k.a. in-sample error) of the dataset as

R̂N (h) ≜ 1

N

N∑
i=1

ℓ(yi, h(xi)). (1)

However, what we really care about is the true risk (a.k.a. out-sample error)

R(h) ≜ Exy(ℓ(y, h(x))), (2)

which represents the average performance of h on an unseen sample drawn according to Py|xPx.

2



ECE 6254 - Summer 2020 - Lecture 1 v1.0 - revised May 11, 2020

A central question of learning is whether one can generalize h, in the sense of quantifying whether
the realization of R̂N (h) is likely to be close to R(h). Another central question is whether we can
learn well, in the sense of trying to identify the best hypothesis is h♯ ≜ argminh∈H R(h) that
minimizes the true risk. We could design an algorithm called empirical risk minimization that could
find h∗ ≜ argminh∈H R̂N (h) but it is not a priori obvious if R̂N (h∗) close to R(h♯). Furthermore,
it is not even clear if R(h♯) is small.

Remark 2.1. Minimizing the empirical risk is not the only way to select a good candidate h ∈ H. We
shall see later examples of algorithms (support vector machines) that learn by minimizing other metrics.
For now, we shall concentrate on empirical risk minimization to answer the questions raised above.

3


	A framework for supervised learning
	Generalization and empirical risk

