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Introduction to VC dimension

Matthieu R. Bloch

1 Motivation: revisiting PAC learnability

For a hypothesis set H with |H| < ∞ and h∗ = argmaxh∈H R̂N (h), the key result behind our
previous PAC learnability analysis is the inequality

∀ϵ > 0 P
(∣∣∣R̂N (h∗)−R(h∗)

∣∣∣ ⩾ ϵ
)
⩽ 2 |H| exp(−2Nϵ2). (1)

In particular, the factor |H| is the result of the union bound, which is used to show that for ϵ > 0

P
(∣∣∣R̂N (h∗)−R(h∗)

∣∣∣ ⩾ ϵ
)
⩽ P

(
∃h ∈ H :

∣∣∣R̂N (h)−R(h)
∣∣∣ ⩾ ϵ

)
(2)

⩽
|H|∑
j=1

P
(∣∣∣R̂N (hj)−R(hj)

∣∣∣ ⩾ ϵ
)
. (3)

The second inequality is tight when the events Ej ≜ {
∣∣∣R̂N (hj)−R(hj)

∣∣∣ ⩾ ϵ} are disjoint, but this
is rarely the case in our classification setup. This is illustrated in Fig. 1 below, in which the two linear
classifier in R2 shown are distinct but have exactly the same empirical risk on the training set.

h1

h2

Figure 1: Two distinct classsifiers with the same empirical risk

This observations suggests that our bound might be extremely loose and that |H| may not nec-
essarily be the right measure of the richness of the hypothesis set H. Most of our work in the next
few lectures will be devoted to finding a suitable replacement for |H|, which will enable use to prove
a generalization bound even in settings for which |H| = ∞, as is the case for linear classifiers.

2 Dichotomy and growth function

Motivated by the situation in Fig. 1, where many classifier have the same empirical risk, we will
attempt to assess the number of hypotheses that lead to distinct labelings for a given dataset. In-
tuitively, we are hoping that the number of distinct labelings is a quantity that better captures the
richness of the hypothesis classH. Formally, we introduce the notion of dichotomy. In what follows
we restrict ourselves to the binary classification problem with labels {±1}.
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Definition 2.1 (Dichotomy). For a dataset D ≜ {xi}Ni=1 and set of hypotheses H, the set of dichotomies
generated by H on D is the set of labelings that can be generated by classfiers in H on the dataset, i.e.,

H({xi}Ni=1) ≜ {{h(xi)}Ni=1 : h ∈ H}. (4)

Note that, as illustrated in Fig. 1, many sets {{h(xi)}Ni=1 for distinct h are actually identical
because the labelings induced on the dataset are identical. By definition, for our binary labeling
problem,

∣∣H({xi}Ni=1)
∣∣ ⩽ 2N and in general

∣∣H({xi}Ni=1)
∣∣ � |H|. Unfortunately,

∣∣H({xi}Ni=1)
∣∣

is not a particularly useful quantity because it is not only potentially difficult to compute but also
dependent on a specific dataset. This motivates the definition of the growth function as follows.

Definition 2.2 (Growth function). For a set of hypotheses H, the growth function of H is

mH(N) ≜ max
{xi}N

i=1

∣∣H({xi}Ni=1)
∣∣ . (5)

Note that the growth function depends on the number of datapoints N but not on the exact
datapoints {xi}Ni=1. The growth function measures the maximum number of dichotomies that H
can generate over all possible datasets, and by definition, it still holds that mH(N) ⩽ 2N .

Example 2.3 (Positive rays). Consider a binary classification problem in R with the set of positive rays

H ≜ {ha : R → {±1} : x 7→ sign (x− a) |a ∈ R}. (6)

As illustrated below, the threshold a defines a classifier such that all points to the left are assigned label
−1 while all points to the right are assigned label +1.

h(x) = +1h(x) = −1

x1 x2 xNxN−1
a

Although H = ∞, the number of dichotomies is still finite, and one can actually compute the growth
function exactly. In general, this is challenging because we need to identify the worst case dataset that
generates the highest number of dichotomies; here, this is only tractable because the situation is simple.

Without losing generality, we can assume that all N points {xi}Ni=1 are distinct. Let us introduce
x0 ≜ −∞ and xN+1 ≜ ∞. For any i ⩾ 0, all classifiers ha with xi ⩽ a < xi+1 induce the
same labeling. Consequently, the number of distinct labelings is at most N + 1 and mH(N) = N +
1. Interestingly, the growth function is growing polynomially in N , which is much slower than the
exponential growth 2N allowed by the upper bound.

Example 2.4 (Positive intervals). Consider a binary classification in R with the set of positive intervals

H ≜ {ha,b : R → {±1} : x 7→ 1{x ∈ [a; b]} − 1{x /∈ [a; b]} |a < b ∈ R}. (7)

As illustrated below, the thresholds a < b define a classifier such that all points with [a; b] are assigned
label +1 while all points outside are assigned label −1.

h(x) = +1h(x) = −1

x1 x2 xNxN−1

a

h(x) = −1

b

Again, this is a situation for which we can compute the growth function exactly. Without loss of generality,
we assume that all N datapoints are distinct and we introduce x0 ≜ −∞ and xN+1 ≜ ∞. We need to
be a bit more careful when counting dichotomies:
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• If x0 < a < b ⩽ x1, all classifiers hab induce an all-−1 labeling;

• for any 0 ⩽ i < j ⩽ N , all classifiers hab such that xi ⩽ a ⩽ xi+1 < xj ⩽ b ⩽ xj+1 induce
the same labelings;

• for any 0 ⩽ i ⩽ N , all classifiers hab such that xi ⩽ a < b < xi+1 induce again an all-−1
labeling.

Consequently, the number of classifiers is 1 +
(
N+1
2

)
and mH(N) = N2

2 + N
2 + 1, which grows again

polynomially in N .

Example 2.5 (Convex sets). Consider a binary classification in R2 with the set

H ≜ {h : R2 → {±1}|{x ∈ R2 : h(x) = +1} is convex}. (8)

Consider a set of N distinct points distributed on the unit circle, as illustrated below.

Notice that irrespective of the labeling of the datapoints, the datapoints for which h(xi) = +1 define the
vertices of a polytope, which is convex. Said differently, irrespective of the labeling there exists h ∈ H that
generates the labeling. Therefore, by definition, mH ⩾ 2N ; since we also know that mH ⩽ 2N , it must
hold that mH = 2N .

The three previous examples are not at all representative of a general situation because it is nearly
impossible to compute the growth function exactly in most practical cases. As shown next, even for
linear classifiers this can become a formidable task.

Example 2.6 (Linear classifiers). Consider a binary classification in R2 with the set of linear classifiers

H ≜ {h : R2 → {±1} : x 7→ sign (w⊺x+ b) |w ∈ R2, b ∈ R} (9)

The challenge again is to identify the worst case dataset that generates the most dichotomies. We first note
that {x : w⊺x+ b = 0} = {x : −w⊺x+ b = 0}, so that a single line actually defines two classifiers.

For N = 3, we need to distinguish two cases. If all three points are aligned, all dichotomies except
those illustrated below are possible, we therefore obtain six dichotomies.

x1 x2 x3 x1 x2 x3

If the three points are not aligned, they form the vertices of a polytope and any hyperplane cutting the
polytope will isolate one point. In addition, any hyperplane no cutting the polytope will assign the same
label to all three points. Consequently, the number of dichotomies generated is 8 = 23.

x1

x2

x3
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Consequently, mH(3) = 8.

For N = 4, we need to distinguish even more cases. If all four points are aligned, all dichotomies
except those illustrated below are possible we therefore obtain 10 dichotomies.

x1 x2 x3 x4 x1 x2 x3 x4

x1 x2 x3 x4 x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

If three out of four points are aligned, the four points form a 3-vertex polytope, and one point, say x2,
is on the edge, say defined by x1 and x3. Any hyperplane cutting through the polytope cannot assign a
label to x2 that is distinct of both x1 and x3. Consequently, the dichotomies illustrated below cannot be
generated and we obtain 12 dichotomies.

x1 x2 x3

x4

x1 x2 x3

x4

x1 x2 x3

x4

x1 x2 x3

x4

If no three out of four points are aligned, the four points could form a 4-vertex polytope, in which case a
hyperplane cutting through the polytope cannot assign distinct labels to a vertex and all its neighbors. The
four points could also form a 3-vertex polytope with a point in the interior, in which case a hyperplane
cutting through the polytope cannot assign a label to the interior point distinct from all the vertices.
Consequently, the dichotomies illustrated below cannot be generated and we obtain 14 dichotomies.

x1

x2

x3

x4

x1

x2

x3

x4

x1
x2

x3

x4

x1
x2

x3

x4

Consequently, mH(4) = 14.

This last example illustrates the essentially combinatorial nature of the calculation of the growth
function. As we will soon seen, we will conveniently only care about the scaling of the growth
function with N in particular whether it is polynomial or exponential.

3 Shattering and break point

We introduced in the previous section the notion of growth function, mH(N), which characterizes
the maximum number of labellings that can be obtained with a given hypothesis set H over all
datasets {xi}Ni=1 of size N . The behavior of the growth function as a function of N can be different
depending on the structure of the hypotheses in H, and we saw examples in which mH(N) grows
polynomially or exponentially in N .

The problem of computingmH(N) is intractable, because it quickly becomes an intricate com-
putational problem that depends not only on all possible configurations of points in the dataset
but also on the constraints induced by the structure of hypotheses in H. We will focus instead on
determining the behavior ofmH(N) as a function of N , which will conveniently tell us a lot about
generalization in a next lecture.

We start by introducing the notion of shattering and break points.
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Definition 3.1 (Shattering). If a hypothesis set H can generate all dichotomies on {xi}Ni=1, we say that
H shatters {xi}Ni=1

Definition 3.2 (Break point). If not data set of size k can be shattered by H, then k is a break point
for H

Note that if k is a break point, any ℓ > k is also a break point.

Example 3.3. For a binary linear classifier in R2, we saw that mH(4) = 14 < 16. In other words, no
dataset of size 4 can be shattered by linear classifiers and k = 4 is a break point.

Although we gave up computing mH(N) for linear classifiers in R2 for N > 4, it turns out
that the existence of break point k is already enough for us to boundmH(N) for every N . We will
formalize this shortly in the next section, but we first illustrate this point with an example.

Example 3.4. Consider a binary classification problem and assume that k = 2 is a break points for H.
How many dichotomies can we generate of set of size N = 3? Our assumption says that H cannot shatter
a set of size 2, so that no h ∈ H can assign all four possible distinct labelings to any set of two points.

Consider the table below, which illustrates all possible binary (◦, ■) labelings on a set size 3.
x1 x2 x3

As illustrated below, we proceed to eliminate labelings forbidden by our assumption that k = 2 is break-
point starting from the top. You can check for yourself that any other order of labeling would result in us
eliminating the same number of dichotomies.

The first three rows correspond to labelings that do not violate our assumption. The fourth row has to be
excluded because it would otherwise allow us to shatter a set of size 2, as illustrated by the gray region.
The procedure continues and one can see that only 4 labelings are allowed out of the 8 possible.

The previous example shows that knowing a break point allows us to reason about the growth
function without really knowing much about H.
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4 Bounding the growth function and Sauer’s lemma

The crux of the approach to bound the growth function is to consider the following combinatorial
quantity.

Definition 4.1. Assume H has break point k. We define B(N, k) as the maximum number of di-
chotomies of N points such that no subset of size k can be shattered by the dichotomies.

Note that B(N, k) is a purely combinatorial quantity, which depends on the fact that k is a
break point forH but otherwise not on the specific nature ofH. By definition, if k is a break point
forH, thenmH(N) ⩽ B(N, k). What makes the definition ofB(N, k) useful is that we can bound
it much more easily than mH(N).

Lemma 4.2. For N > 1 B(N, 1) = 1, for k > 1 B(1, k) = 2, and

∀k > 1 B(N, k) ⩽ B(N − 1, k) +B(N − 1, k − 1).

Lemma 4.3 (Sauer’s lemma).

B(N, k) ⩽
k−1∑
i=0

(
N

i

)
(10)

Proof. See notes and [1, Section 2.1.2]. ■

Lemma 4.3 therefore implies that B(N, k) is a polynomial in N of degree at most k − 1. In
addition, we can conclude that ifH has a break point (no matter its value as long as it is finite) then
mH(N) is polynomial in N .

5 VC bound

We are finally ready to establish the result promised in the introduction, known in leaning theory
as the VC bound. The goal of this section is to establish the following theorem.

Theorem 5.1. Consider a potentially infinite hypothesis set H. Then, for a dataset {(xi, yi)}Ni=1, we
have

P
(
sup
h∈H

∣∣∣R(h)− R̂N (h)
∣∣∣ > ϵ

)
⩽ 4mH(2N)e−

1
8 ϵ

2N

This theorem should be compared with our previous generalization bound developed for |H| <
∞ and for which we proved

P
(
max
h∈H

∣∣∣R(h)− R̂N (h)
∣∣∣ > ϵ

)
⩽ 2 |H| e−2ϵ2N .

The major changes in Theorem 5.1 are 1. the max is replaced by sup; and 2. |H| is replaced by
mH(2N) . In particular, note that Theorem 5.1 can handle infinite hypothesis classes. To obtain a
PAC style bound, note that Theorem 5.1 implies that with probability at least 1− δ

R(h∗) ⩽ R̂N (h∗) +

√
8

N

(
logmH(2N) + log

4

δ

)
. (11)
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The key difficulty behind proof is to somehow relate suph∈H to maxh∈H′ withH′ ⊂ H and |H′| <
∞. The first proof to achieve this was developed by Vapnik and Chervonenkis in 1971, hence the
“VC” name attached to Theorem 5.1.

We start by developing some rough intuition for the approach. Note that growth function
mH replaces |H| in Theorem 5.1, capturing the fact that although there may be infinitely many
hypotheses in H, the hypotheses generate a finite number of unique dichotomies. Consequently,
the set {R̂N (h) : h ∈ H} has finite cardinality. Unfortunately, note that the termR(h) that appears
in Theorem 5.1 still potentially takes infinitely many different values.

The key insight behind the VC bound is that one can bound P
(
suph∈H

∣∣∣R(h)− R̂N (h)
∣∣∣ > ϵ

)
using events that only depend on empirical risks using a second ghost dataset of size N with em-
pirical risk R̂′

N (h), with the hope that we can squeeze R(h) between R̂′
N (h) and R̂N (h). Specifi-

cally, we will relate P
(∣∣∣R(h)− R̂N (h)

∣∣∣ > ϵ
)
to P

(∣∣∣R̂′
N (h)− R̂N (h)

∣∣∣ > ϵ′
)
with ϵ′ = f(ϵ). Since

P
(∣∣∣R̂N (h)− R̂′

N (h)
∣∣∣ > ϵ

)
only depends on the finite number of unique dichotomies, bounding

it with a union bound is likely to be a more fruitful endeavor.
The idea behind the ghost dataset can be captured using the following lemma.

Lemma 5.2. Assume that X, X ′ be i.i.d. random variables with symmetric distribution around their
mean µ. Let A ≜ {|X − µ| > ϵ} and let B ≜ {|X −X ′| > ϵ}. Then,

P(A) ⩽ 2P(B).

If X ≜ R̂N (h) and X ′ ≜ R̂′
N (h) had symmetric distributions, we would obtain

P
(∣∣∣R(h)− R̂N (h)

∣∣∣ > ϵ
)
⩽ 2P

(∣∣∣R̂N (h)− R̂′
N (h)

∣∣∣ > ϵ
)
.

This is not quite true, but we will prove the very similar result given next.

Lemma 5.3. If N ⩾ 4ϵ−2 ln 2,

P
(
sup
h∈H

∣∣∣R(h)− R̂N (h)
∣∣∣ > ϵ

)
⩽ 2P

(
sup
h∈H

∣∣∣R̂′
N (h)− R̂N (h)

∣∣∣ > ϵ

2

)
Lemma 5.4. Let S ≜ {(xi, yi)}2Ni=1 be a dataset partitioned into two subsets S1 and S2 each containing
N points uniformly at random. Assume that R̂N (h) is computed on S1 while R̂′

N (h) is computed on
S2. Then

P
(
sup
h∈H

∣∣∣R̂′
N (h)− R̂N (h)

∣∣∣ > ϵ

2

)
⩽ mH(2N) sup

S1,S2

sup
h∈H

P
(∣∣∣R̂′

N (h)− R̂N (h)
∣∣∣ > ϵ

2
|S
)
.

Lemma 5.5. For any h ∈ H and any set S, we have

P
(∣∣∣R̂′

N (h)− R̂N (h)
∣∣∣ > ϵ

2
|S
)
⩽ 2e−

1
8 ϵ

2N .

Combining the results of Lemmas 5.3- 5.5 establishes Theorem 5.1. Equation (11), which
follows directly fromTheorem 5.1, is usually expressed slighlty differently using the VC dimension.
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Definition 5.6. The VC dimension of a class H, denoted dVC(H), is the *largest* n such that mH(n) =
2n.

By definition dVC is one less that the smallest break point.

Example 5.7. For linear classifiers in R2, we have already shown that dVC = 3

Lemma 4.3 can be refined to show the following.

Lemma 5.8. If k is a break point for H,

mH(N) ⩽
k−1∑
i=0

(
N

i

)
⩽ Nk−1 + 1.

Consequently, one can show

R(h∗) ⩽ R̂N (h∗) +

√
8

N
log

4((2N)dVC + 1)

δ

(dVC⩾2)

⩽ R̂N (h∗) +

√
8dVC
N

log
8N

δ
,

which clearly illustrates how the VC bound controls the ability to generalize.
In general, computing the VC dimension of a set of hypothesesH is difficult, but it is sometimes

possible.

Proposition 5.9. The VC dimension for linear classifiers in Rd is d+ 1.

The number of parameters of a linear classfier in Rd is d + 1, which might suggest that the
number of parameters is what influences the VC dimension. This is actually misleading because
more parameters does not necessarily means higher VC dimension.

Proposition 5.10. The VC dimension for 1-NN classifiers isdVC = ∞.

Through fairly involved arguments, one can show that SVMs with large margin have a small
VC dimension and that a small generalization error. This still is sort of true for soft margin, but the
math is much more involved.

To conclude, the VC dimension is a measure of complexity of infinite sized hypothesis classes
which allows us to study PAC learnability in a much broader setting. However, this is does not fully
solve the learning problem because the VC dimension is hard to work with in practice and fails
to explain why Deep Neural Networks perform so well. The VC dimension is therefore a useful
theoretical tool to develop insight regarding generalization, but will see others that are more useful
in practice.

References

[1] Y. S. Abu-Mostafa, M.Magdon-Ismail, andH.-T. Lin, Learning From Data. AMLBook, 2012.

8


	Motivation: revisiting PAC learnability
	Dichotomy and growth function
	Shattering and break point
	Bounding the growth function and Sauer's lemma
	VC bound

