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Probably Approximately Correct Learnability

Matthieu R. Bloch

Now that we have introduced a complete model for supervised learning, our objective is to show
that some of the questions raised earlier have a chance of being answered. We proceed by analyzing
a simplified model, which still captures the essence of the problem but is more easily amenable to
analysis. We will talk about the more general setting later in the semester.

We consider the supervised learning model that consists of the following.

1. A dataset D ≜ {(x1, y1), · · · , (xN , yN )}

• {xi}Ni=1 drawn i.i.d. from an unknown probability distribution Px on X ;
• {yi}Ni=1 with Y = {0, 1} (binary classification).

2. An unknown f : X → Y , no noise.

3. A finite set of hypotheses H, |H| =M <∞, denoted H ≜ {hi}Mi=1.

4. A binary loss function ℓ : Y × Y → R+ : (y1, y2) 7→ 1{y1 6= y2}.
Note that we do not specify a specific algorithm yet as we will be focusing on amore abstract learning
operation.

For this model and any hypothesis h ∈ H, the true risk simplifies as

R(h) ≜ Exy(1{h(x) 6= y}) =
∑
x

∑
y

px,y(x, y)1{h(x) 6= y} = Pxy(h(x) 6= y). (1)

and the empirical risk becomes

R̂N (h) =
1

N

N∑
i=1

1{h(xi) 6= yi} . (2)

We will discuss this in more details later, but it is very natural for learning algorithms to attempt
to minimize the empirical risk and look for a hypothesis h∗ that ensures a minimal risk

h∗ = argmin
h∈H

R̂N (h). (3)

1 Sample complexity

Generalizing The first question we raised was the possibility of generalizing a hypothesis. Mathe-
matically, for a specific hypothesis hj ∈ H, this means assessing how R̂N (hj) compares to R(hj).
Observe that the empirical risk in (2) is a random variable since it is a function of the data set, which
is a random variable. More specifically, since every xi is generated independent and identically dis-
tributed (i.i.d.), the empirical risk is actually the sample average of N i.i.d. variables 1{h(xi) 6= y}.
In addition observe that

E
(
R̂N (hj)

)
=

1

N

N∑
i=1

E(1{h(xi) 6= yi}) =
1

N

N∑
i=1

Px,y(h(x) 6= yi) = R(hj) (4)
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Therefore, the quantity P
(∣∣∣R̂N (hj)−R(hj)

∣∣∣ > ϵ
)
is the probability that sample average of i.i.d.

random variables differ from their mean by more than ϵ. Such bounds are extremely common in
applied probability and are known as concentration inequalities. We will now review some of the
fundamental ideas behind these bounds.

The start of most if not all concentration inequalities is Markov’s lemma.

Lemma 1.1. Let X be a non-negative real-valued random variable. Then for all t > 0

P(X ⩾ t) ⩽ E(X)

t
. (5)

Proof. For t > 0, let 1{X ⩾ t} be the indicator function of the event {X ⩾ t}. Then,

E[X] ⩾ E[X1{X ⩾ t}] ⩾ tP[X ⩾ t], (6)

where the first inequality follows because the indicator function is {0, 1}-valued and X is non-
negative; the second because X ⩾ t whenever 1{X ⩾ t} = 1 and 0 else.

That was a clean and fast proof, but you may be more comfortable going back to the definition
of E(X) to prove the result. Note that

E(X) =

∫ ∞

0

xpX(x)dx =

∫ t

0

xpX(x)dx︸ ︷︷ ︸
⩾0

+

∫ ∞

t

xpX(x)dx
(a)

⩾ t

∫ ∞

t

pX(x)dx (7)

= tP(X ⩾ t) (8)

where (a) follows from the fact that x ⩾ t in the second integral. Note that the non-negative nature
of X is crucial to lower bound the first integral. ■

By choosing t = ϵE(X) for ϵ > 0 in (5), we obtain P(X ⩾ ϵE(X)) ⩽ 1
ϵ , which is consistent

with the intuition that it is unlikely that a random variable takes a value very far away from its mean.
In spite of its relative simplicity,Markov’s inequality is a powerful tool because it can be “boosted.”

For X ∈ X ⊂ R, consider ϕ : X → R+ non-decreasing on X such that E(|ϕ(X)|) <∞. Then,

P[X ⩾ t] = E[1{X ⩾ t}] = E[1{X ⩾ t}1{ϕ(X) ⩾ ϕ(t)}] ⩽ P[ϕ(X) ⩾ ϕ(t)], (9)

where we have used the definition of ϕ and the fact that an indicator function is upper bounded by
one. Applying Markov’s inequality we obtain

P[X ⩾ t] ⩽ E[ϕ(X)]

ϕ(t)
, (10)

which is potentially a better bound than (5). Of course, the difficulty is in choosing the appropriate
function ϕ to make the result meaningful. The most well-known application of this concept leads
to Chebyshev’s inequality.

Lemma 1.2 (Chebyshev’s inequality). Let X ∈ R. Then,

P[|X − E(X)| ⩾ t] ⩽ Var(X)

t2
. (11)
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Proof. Define Y ≜ |X − E(X)| and ϕ : R+ → R+ : t 7→ t2. Then, by the boosted Markov’s
inequality we obtain

P[|X − E(X)| ⩾ t] = P[Y ⩾ t] ⩽ E[Y 2]

t2
=

Var(X)

t2
. (12)

■

As an application of Chebyshev’s inequality, we derive the weak law of large numbers.

Lemma 1.3 (Weak law of large numbers). Let Xi ∼ pXi
be independent with E[|Xi|] < ∞ and

Var(Xi) < σ2 for some σ2 ∈ R+. Define Z = 1
N

∑N
i=1Xi for N ∈ N∗. Then Z converges in

probability to 1
N

∑N
i=1 E(Xi).

Proof. First observe that

E[Z] =
1

N

N∑
i=1

E[Xi] and Var(Z) =
1

N2

N∑
i=1

Var(Xi). (13)

Therefore,

P

(∣∣∣∣∣ 1N
N∑
i=1

Xi −
1

N

N∑
i=1

E[Xi]

∣∣∣∣∣ ⩾ ϵ

)
= P

∣∣∣∣∣ 1N
N∑
i=1

Xi −
1

N

N∑
i=1

E[Xi]

∣∣∣∣∣
2

⩾ ϵ2

 (14)

⩽
N∑
i=1

Var(Xi)

N2ϵ2
<

σ2

Nϵ2
. (15)

■

The weak law of large numbers is essentially stating that 1
N

∑N
i=1Xi concentrates around its

average. Note, however, that the convergence we proved in (15) is rather slow, on the order of 1/N .

Let us now go back to our learning problem. Applying (15), we know that

∀ϵ > 0 P{(xi,yi)}

(∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩾ ϵ

)
⩽ Var(1{hj(x1) 6= y1})

Nϵ2
⩽ 1

Nϵ2
, (16)

where the last inequality comes from the observation that Var(1{hj(x1) 6= y}) ⩽ 1 since the in-
dicator function is a {0, 1}-valued function. Notice that the bound that we obtain is universal in
that it does not depend on Px anymore. This is particularly pleasing because we introduced Px in a
rather arbitrary way.

We can now compute the sample complexity for generalizing hj , defined as the number of samples
Nϵ,δ required to achieve

∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩽ ϵ with probability at least 1 − δ. From (16), note

that we obtain

Nϵ,δ ⩾
1

δϵ2
. (17)

The sample complexity behavior with δ and ϵ is consistent with our intuition, the more precise we
want the empirical risk to be, the more samples we need.
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Learning Unfortunately, the situation is slightly bleaker than what (17) shows. What we really
care about is to learn and how the empirical risk of h∗ generalizes, not the empirical risk of a given
hypothesis in H. We therefore need to make a statement about

P{(xi,yi)}

(∣∣∣R̂N (h∗)−R(h∗)
∣∣∣ ⩾ ϵ

)
, (18)

which is unfortunately hard to compute explicitly because h∗ = argminh∈H R̂N (h). We can pro-
ceed by bounding (18), noting that

P{(xi,yi)}

(∣∣∣R̂N (h∗)−R(h∗)
∣∣∣ < ϵ

)
⩾ P{(xi,yi)}

(
∀hj ∈ H

∣∣∣R̂N (hj)−R(hj)
∣∣∣ < ϵ

)
(19)

so that

P{(xi,yi)}

(∣∣∣R̂N (h∗)−R(h∗)
∣∣∣ ⩾ ϵ

)
⩽ P{(xi,yi)}

(
∃hj ∈ H

∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩾ ϵ

)
. (20)

The quantity on the right-hand-side of (20) is still hard to analyze because the events

Ej ≜ {
∣∣∣R̂N (hj)−R(hj)

∣∣∣ ⩾ ϵ}

are not independent since they are all functions of the same dataset. A usual trick to deal with such
quantities is to use the union bound,

P{(xi,yi)}

(
∃hj ∈ H

∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩾ ϵ

)
⩽

M∑
j=1

P{(xi,yi)}

(∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩾ ϵ

)
. (21)

Combining (20) and (21) with (16), we obtain

P{(xi,yi)}

(∣∣∣R̂N (h∗)−R(h∗)
∣∣∣ ⩾ ϵ

)
⩽ M

Nϵ2
, (22)

so that the sample complexity to generalize h∗ is

Nϵ,δ ⩾
M

δϵ2
. (23)

This is a pessimistic result, because it tells us that the number of samples in the dataset must be larger
than the numbers of hypotheses inH, which will prevent us from using large sets of hypotheses that
are presumably “rich” and have a better chance of approximating the unknown function h.

We can actually improve (23) by improving upon Chebyshev’s inequality and choosing a better
boosting function. For instance, with ϕ : t→ tq for q ∈ N \ {0, 1}, we have

P[|X − E(X)| ⩾ t] ⩽ E[|X − E(X)|q]
tq

. (24)

If ∀q ∈ N \ {0, 1}, E[|X − E(X)|q] <∞, we obtain

P[|X − E(X)| ⩾ t] ⩽ inf
q∈N\{0,1}

E[|X − E(X)|q]
tq

. (25)

This might come in handy if one has access to higher order absolute moments, but we can actually
do much better.
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2 Chernoff bounds

The trick to obtain exponential concentration is to boost Markov’s inequality with functions of the
form ϕλ : t → eλt for λ ∈ R+. The resulting bounds are often known as Chernoff bounds. Note
that for a real-valued random variable Z

∀λ ∈ R+ P[|Z − E[Z]| ⩾ t] ⩽ E(ϕλ(|Z − E(Z)|))
ϕλ(t)

= e−λtE
[
eλ|Z−E[Z]|

]
(26)

Applying the union bound

P[|Z − E[Z]| ⩾ t] = P[Z − E[Z] ⩾ t] + P[E[Z]− Z ⩾ t]. (27)

Setting Z̃ ≜ Z − E[Z] or Z̃ ≜ E[Z] − Z, the problem of deriving concentration inequalities is
tantamount to studying P [Z̃ ⩾ t] where Z̃ ∈ R is centered. We will make this assumption from
now on to simplify analysis and notation without losing generality.

2.1 Concentration inequalities for sub-Gaussian random variables
If Z centered and real-valued, we have

∀λ ∈ R+ P[Z ⩾ t] ⩽ e−λtE[eλZ ]. (28)

For λ ∈ R, E[eλZ ] is the Moment Generating Function (MGF) of Z, and ψZ(λ) ≜ logE
[
eλZ

]
is

the Cumulant Generating Function (CGF) of Z. We recall some of the properties of the CGF.

Proposition 2.1. Let Z be centered and real-valued such that E[eλZ ] < ∞ for all |λ| < ϵ for some
ϵ > 0. Then, the CGF satisfies the following properties.

1. ψZ is infinitely differentiable on ]− ϵ, ϵ[. In particular, ψ′
Z(0) = ψZ(0) = 0;

2. ψZ(λ) ⩾ λE(Z) = 0;

3. If Z =
∑n
i=1Xi with Xi independent with well defined CGFs, ψZ(λ) =

∑n
i=1 ψXi(λ).

Proof. We skip the subtleties behind proof of differentiability, which essentially follows from the
dominated convergence theorem. We will also happily swap derivatives and integrals without wor-
rying too much. By definition, ψZ(0) = logE(1) = 0. In addition,

dψ

dλ
(λ) =

E
(
ZeλZ

)
E(eλZ)

, (29)

so that dψdλ (0) = 0 since E(Z) = 0. For the second part, note that by Jensen’s inequality

ψZ(λ) = logE
(
eλZ

)
⩾ E

(
log eλZ

)
= λE(Z). (30)

For the third part, we have

E
[
eλZ

]
= E

[
eλ

∑n
i=1Xi

]
= E

[
n∏
i=1

eλXi

]
=

n∏
i=1

E
[
eλXi

]
= e

∑n
i=1 logE[eλXi ] (31)

■

5
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Since our goal is to find the best upper bound in the right-hand side of (28), it is natural to
maximize over all λ ∈ R+ to obtain

P[Z ⩾ t] ⩽ exp

(
− sup
λ∈R+

(λt− ψZ(λ))

)
. (32)

Definition 2.2. For a real-valued centered random variable Z with cumulant generating function ψZ ,
the Cramer transform of ψZ is ψ∗

Z defined as

∀t ∈ R+ ψ∗
Z(t) ≜ sup

λ∈R+

(λt− ψZ(λ)) . (33)

Note that ψ∗
Z(t) ⩾ −ψZ(0) = 0 so that ψ∗

Z(t) ∈ R+. In general, the Cramer transform only
takes simple values in trivial cases. If ∀λ ∈ R∗

+, ψZ(λ) = ∞ then ψ∗
Z(t) = 0 since ψZ(0) = 0. If

t < E(Z) = 0 then ψ∗
Z(t) = 0. If t ⩾ E(Z) then, for all λ < 0, λt − ψZ(λ) ⩽ 0. Consequently,

the bound in (32) is only useful when t ⩾ E(Z), in which case we can maximize over λ ∈ R in (33).
Note that we can write ψ∗

Z(t) as ψ∗
Z(t) = λtt− ψZ(λt) with λt such that ψ′

Z(λt) = t.

Example 2.3. Let Z ∼ N (0, σ2). Then,

E[eλZ ] =
∫ ∞

−∞

1√
2πσ

e−
z2

2σ2 eλzdz =
∫ ∞

−∞

1√
2πσ

e−
(z−λσ2)2

2σ2 e
λ2σ2

2 dz = e
λ2σ2

2 . (34)

HenceψZ(λ) = log eλ2σ2

2 = λ2σ2

2 . Thenψ′
Z(λ) = λσ2 so thatψ′

Z(λt) = t⇔ λtσ
2 = t⇔ λt =

t
σ2

and

ψ∗
Z(t) =

t2

σ2
− t2

2σ2
=

t2

2σ2
. (35)

Hence, P[Z ⩾ t] ⩽ e−
t2

2σ2 .

The pleasingly simple form of the Chernoff bound for Z ∼ N (0, 1) stems from the simple form
of the CGF. This naturally leads to the following definition.

Definition 2.4. Z ∈ R is subgaussian if ∃σ2 ∈ R+
∗ such that ∀λ ∈ R, ψZ(λ) ⩽ λ2σ2

2

If Z is subgaussian then ∀λ ∈ R, λt− ψZ(λ) ⩾ λt− λ2σ2

2 . In this case

ψ∗
Z(t) ⩾ sup

λ∈R

(
λt− λ2σ2

2

)
=

t2

2σ2
. (36)

Consequently, proving sub-Gaussianity is a proxy for obtaining exponential concentration.

2.2 Hoeffding’s inequality
As an application, we establish the celebrated Hoeffding’s inequality. We start by proving that some
variables are sub-Gaussian.

Lemma 2.5 (Hoeffding’s lemma). Let a random variable Y such that E[Y ] = 0 and Y ∈ [a, b]. Then
Y is sub-Gaussian, and more specifically ψY (λ) ⩽ λ2 (b−a)2

8 .

6
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Proof. Recall that ψY (λ) = logE[eλY ]. We bound E[eλY ]. Since f : x→ eλx is convex, note that
we can write

∀y ∈ [a, b] y =
b− y

b− a︸ ︷︷ ︸
0⩽γ⩽1

a+
y − a

b− a︸ ︷︷ ︸
1−γ

b. (37)

Then y = γa+ (1− γ)b, hence

eλy ⩽ γeλa + (1− γ)eλb =
b− y

b− a
eλa +

y − a

b− a
eλb (38)

and setting ρ ≜ −a
b−a , we obtain

E[eλY ] ⩽ b

b− a
eλa − a

b− a
eλb (39)

= (1− ρ)eλa + ρeλb (40)

=
(
1− ρ+ ρeλ(b−a)

)
e−ρλ(b−a) (41)

= exp
(
ln
(
1− ρ+ ρeλ(b−a)

)
− ρλ(b− a)

)
(42)

Consider the function gρ : x → ln(1 − ρ + ρex) − ρx, then gρ(x) ⩽ x2

8 . Hence E[eλY ] ⩽
exp
(
λ2(b−a)2

8

)
. ■

Alternative proof (more tricky). Let a random variable Y ∼ pY such that E[Y ] = 0 and Y ∈ [a, b].
Then a ⩽ Y ⩽ b and a−b

2 ⩽ Y − a+b
2 ⩽ b−a

2 , so that
∣∣Y − a+b

2

∣∣ ⩽ b−a
2 and Var(Y ) ⩽ (b−a)2

4 .
Define Z ∈ [a, b] such that pZ(y) = eλy

E[eλY ]
pY (y). Then we also have Var(Z) ⩽ (b−a)2

4 . On the
other hand

Var(Z) = E[Z2]− E[Z]2 (43)

=

∫ b

a

y2
eλy

E[eλY ]
pY (y)dy −

(∫ b

a

y
eλy

E[eλY ]
pY (y)dy

)2

(44)

=
E[Y 2eλY ]

E[eλY ]
−
(
E[Y eλY ]
E[eλY ]

)2

⩽ (b− a)2

4
(45)

Note that
ψY (λ) = logE[eλY ] ψY (0) = 0 (46)

Then
ψ′
Y (λ) =

E[Y eλY ]
E[eλY ]

ψ′
Y (0) = 0 (47)

and
ψ′′
Y (λ) =

E[Y 2eλY ]

E[eλY ]
− E[Y eλY ]2

E[eλY ]2
= Var(Z) ⩽ (b− a)2

4
(48)

From Taylor’s theorem, ∃c ∈ [0, λ] such that

ψY (λ) = ψY (0) + λψ′
Y (0) +

λ2

2
ψ′′
Y (c) (49)

Therefore, ψY (λ) ⩽ λ2(b−a)2
8 . ■

7
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Proposition 2.6 (Hoeffding’s inequality). Consider independent random variablesXi withE[Xi] = 0
and Xi ∈ [ai, bi]. Let Y =

∑n
i=1Xi. Then

P

[
n∑
i=1

Xi ⩾ t

]
⩽ exp

(
− 2t2∑n

i=1(bi − ai)2

)
(50)

Proof. The proof follows by combining Lemma 2.5 with Proposition 2.1 to obtain

ψY (λ) =

n∑
i=1

ψXi(λ) ⩽
n∑
i=1

λ2

8
(bi − ai)

2 =
λ2σ2

2
(51)

with

σ2 ≜ 1

4

n∑
i=1

(bi − ai)
2. (52)

■

3 Learning may work

Let us now revisit our learning problem with Hoeffding’s inequality. For a given hj ∈ H, we obtain

∀ϵ > 0 P{(xi,yi)}

(∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩾ ϵ

)
⩽ 2 exp

(
−2Nϵ2

)
, (53)

which decays exponentially fast with N . Consequently, following the same reasoning in Section 1,
we also have

P{(xi,yi)}

(∣∣∣R̂N (h∗)−R(h∗)
∣∣∣ ⩾ ϵ

)
⩽ 2M exp

(
−2Nϵ2

)
, (54)

so that the sample complexity to generalize h∗ is

Nϵ,δ ⩾
1

2ϵ2

(
logM + log

2

δ

)
. (55)

This is a much more optimistic result. The sample complexity to generalize h∗ now only depends
only logarithmically on the number of hypothesesM . We can therefore hope to use a very large set
H to find good approximations of f but without requiring unreasonably many samples N .

Remark 3.1. The result is not quite ideal, because many sets H of practical interest (neural networks,
perceptron) have |H| = ∞. Still this should give us hope that we’re doing something meaningful.

4 PAC learnability

The last question to answer is howR(h∗), the true risk of the hypothesis we pick with empirical risk
minimization, compares to R(h♯), the true risk of the best hypothesis in the class. Upon inspection
of how we derived the sample complexity with Hoeffding’s inequality, note that we actually proved
something much stronger than what we needed. We actually proved that the sample complexity
ensures that

P{(xi,yi)}

(
∀hj ∈ H

∣∣∣R̂N (hj)−R(hj)
∣∣∣ ⩽ ϵ

)
⩾ 1− δ. (56)

In that case, the following holds.

8
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Lemma 4.1. If ∀hj ∈ H we have
∣∣∣R̂N (hj)−R(hj)

∣∣∣ ⩽ ϵ then
∣∣R(h∗)−R(h♯)

∣∣ ⩽ 2ϵ.

Proof. Note that ∣∣R(h∗)−R(h♯)
∣∣ = ∣∣∣R(h∗)− R̂N (h∗) + R̂N (h∗)−R(h♯)

∣∣∣ (57)

⩽
∣∣∣R(h∗)− R̂N (h∗)

∣∣∣+ ∣∣∣R̂N (h∗)−R(h♯)
∣∣∣ . (58)

By assumption, we have
∣∣∣R(h∗)− R̂N (h∗)

∣∣∣ ⩽ ϵ since h∗ ∈ H. In addition, by definition of h♯ as
the minimizer of the true risk,

R(h♯) ⩽ R(h∗) ⩽ R̂N (h∗) + ϵ. (59)

By definition of h∗ as the minimizer of the empirical risk, we also have

R̂N (h∗) ⩽ R̂N (h♯) ⩽ R(h♯) + ϵ. (60)

so that ∣∣∣R̂N (h∗)−R(h♯)
∣∣∣ ⩽ ϵ. (61)

■

In learning theory, these ideas are formalized in terms of probably approximately correct learn-
ability (PAC) as follows.

Definition 4.2. A hypothesis set H is PAC learnable if there exists a function NH :]0; 1[2→ N and a
learning algorithm such that:

• for very ϵ, δ ∈]0; 1[,

• for every Px, Py|x,

• when running the algorithm on at leastNH(ϵ, δ) i.i.d. examples, the algorithm returns a hypothesis
h ∈ H such that

Pxy
(∣∣R(h)−R(h♯)

∣∣ ⩽ ϵ
)
⩾ 1− δ

The function NH(ϵ, δ) is the sample complexity. Note that the definition of sample complexity
is here slightly different from what we used earlier. Sample complexity is defined with respect to
the true risk of h♯, while we previously only worried about the true risk of h∗. The name probably
approximately correct comes from the bound Pxy

(∣∣R(h)−R(h♯)
∣∣ ⩽ ϵ

)
⩾ 1− δ. In words, it says

that with probability at least 1 − δ (probably), the true risk incurred by h is no more than ϵ away
from the best true risk (approximately correct). Note that the definition of PAC learnability is quite
stringent because it requires the bound to hold irrespective of the what Px and Py|x really are. All we
should assume is that they exist.

Perhaps surprisingly, if you trace back everything we proved so far (check for yourself!), we have
effectively already proved the following result.

Proposition 4.3. A finite hypothesis set H is PAC learnable with the Empirical Risk Minimization
algorithm and with sample complexity

NH(ϵ, δ) = d2 ln(2 |H| /δ)
ϵ2

e
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Although the caveats regarding the fact that we require |H| < ∞ still apply, it should be com-
forting that we can make such a fundamental statement about learning.

Remark 4.4. You might note that the sample complexity seems off by a factor of two compared to what
we derived earlier. This is because the sample complexity as per Definition 4.2 requires the true risks of h∗
and h♯ to be close, instead of requiring the empirical risk of h∗ to be close to the true risk of h∗. Proving
the result of Proposition 4.3 requires you to use Lemma 4.1.

Note, however, that this does not address the question of ensuring that the risk of the best hy-
pothesis h∗ = argminh∈H R̂N (h)we find is actually small. To have a small risk, we must ensure that
the hypothesis class H is somehow “rich enough” to have a good chance of well approximating the
unknown function f . With our current analysis, the size |H| of the class is the proxy for the richness
of the class, and although the dependence of the sample complexity on |H| is only logarithmic, we
need many sample if the class size grows large.

In practice, the size of the dataset N is fixed, and three phenomena occur as we increase the
richness of the class H. Recall that h∗ ≜ argminh∈H R̂N (h) and h♯ ≜ argminh∈HR(h).

1. The empirical risk of h∗ decreases;

2. The true risk of h♯ decreases;

3. The true risk of h∗ decreases before it increases again (the curve has a U-shape).

|H|

Risk

R̂N(h
∗)

R(h♯)

R(h∗)

Figure 1: Evolution of risk when richness of H increases

In our simple learning model, the last phenomenon happens because as we increase the size of
the class |H| for a fixed dataset sizeN , it becomes increasingly likely that there are hypotheses whose
empirical risk is very different from their true risk. This behavior is representative of most if not all
learning problems, and is summarized in Fig. 1.

One should also realize that it may not be possible to ever achieve zero risk learning. In fact, our
general learning model accounts for the presence of noise through Py|x. This naturally prompts the
question of what is the smallest risk R(h♯) that one can achieves and how to achieve it.

10
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5 To go further

We have only touched upon concentration inequalities, there is an entire field of research devoted
to proving such results in intricate situations. Two great references are [1], from which I borrowed
most of the ideas, and [2].

To explore the topic further, recommend readings include [3, Section 1.3], [4, Chapters 2-4].
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