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A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

1. Dataset D = {(x1,91), -, (X3, yn)}
o {x;}¥, drawn i.i.d. from unknown Py on X

s {y;};v, labels with Y = {0, 1} (binary classification)

2. Unknown f : X — Y, no noise.
3. Finite set of hypotheses H, |H| = M < oo
" H S {hi}qjl\il
4. Binary loss function £ : Y x Y — R™ : (y1,42) — 1{y; # vy}

In this very specific case, the true risk simplifies

R(h) = Exf1{h(x) # y}] = Pxy(h(x) # y)

The empirical risk becomes

Rn(h) = % Z 1{h(x;) # yi}
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CAN WE LEARN?

Our objective is to find a hypothesis h* = argmin, _,, Ry (k) that ensures a

small risk

For a fixed h; € H, how does Ry (h;) comparesto R(h;)?

Observe thatfor h; € ‘H
= The empirical risk is a sum of iid random variables

Ry(h;) = % Z 1{h;(x:) # yi}

- E[EN(hj)} = R(h;)

P (‘EN(hj) — R(hj)‘ > e) is a statement about the deviation of a

normalized sum of iid random variables from its mean
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CONCENTRATIO
INEQUALITIES

We’re in luck! Such bounds, a.k.a, known as concentration inequalities, are a well studied subject



CONCENTRATION INEQUALITIES: BASICS

Lemma (Markov's inequality)

Let X be a non-negative real-valued random variable. Then forall ¢ > 0

1
P(X >t) < %
Lemma (Chebyshev's inequality)

Let X be areal-valued random variable. Then forallt > 0

- Var(X) |

P(X ~ BX]| > t) < —

Proposition (Weak law of large numbers)

Let { X}, bei.i.d. real-valued random variables with finite mean g and finite variance o. Then
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BACK TO LEARNING

By the law of large number, we know that

[
[A

) Var(1{h;(x1) # y1}) 1

Ve >0 P{ (‘RN R(hj)‘ > € Ne2 Ne2

Given enough data, we can generalize

to ensureIP)(‘RN (h;) — R(hj)‘ > e) < 9.

How much data? N = 5 o

That’s not quite enough! We care about Ry (h*) where h* = argmin, ,, Ry (h)
» If M = |H|is large we should expect the existence of hy, € H such that EN(hk) < R(hg)

P(|By(h) = R(W)| = €) <P(3j: |Ru(hy) — R(hy)| = )

o * M
IP’(‘RN(h ) — R(h*)| > e) <
If we choose NV > [ > | we can ensureIP’(‘RN h*) — R(h*)| > e) < 4.

= That’s a lot of samples!
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CONCENTRATION INEQUALITIES: NOT SO BASIC

We can obtain much better bounds than with Chebyshev
Lemma (Hoeffding's inequality)

Let {Xi},f\il be i.i.d. real-valued zero-mean random variables such that X; € |a;; b;| with a; < b;. Then for all

e >0
1 & 2N 2¢2
P(—in ZE)SZGXP(— ~ ‘ )
N i=1 Zi:1(bz’_ai)2

In our learning problem

Ve > 0 P(‘EN(hj) — R(hj)‘ > e) < 2exp(—2Ne?)

Ve > 0 P(\}?N(h*) ~ R(h)

> e) < 2M exp(—2Ne?)

We can now choose N > [ -5 (In 254
M can be quite large (almost exponential in IN) and, with enough data, we can generalize h*.

How about learning h* £ argmin, _,, R(h)?



LEARNING CAN WORK!

Lemma.
fVj € H \RN(hj) - R(hj)\ < ethen |R(h*) — R(W)| < 2e.

How do we make R(h¥) small?
= Need bigger hypothesis class H! (could we take M — o0?)
= Fundamental trade-off of learning

Risk N
A underfitting ' overfitting

“Richness” of hypothesis class
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PROBABLY APPROXIMATELY CORRECT LEARNABILITY

Definition. (PAC learnability)
A hypothesis set H is (agnostic) PAC learnable if there exists a function N3 :]0; 1[*— N and a learning
algorithm such that:

= forverye, § €]0;1],

= forevery Py, Py,

= when running the algorithm on at least Ny (¢, d) i.i.d. examples, the algorithm returns a hypothesis
h € H such that

ny(\R(h) — R(hY)| < e) >1-4

The function Ny (€, §) is called sample complexity
We have effectively already proved the following result
Proposition.

A finite hypothesis set H is PAC learnable with the Empirical Risk Minimization algorithm and with sample
complexity
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WHAT IS A GOOD HYPOTHESIS SET?

Risk N
A underfitting ' overfitting

“Richness” of hypothesis class

Ideally we want |H| small so that R(h*) ~ R(h*) and get lucky so that R(h*) ~ 0

In general this is not possible
= Remember, we usually have to learn P4, not a function f

, Questions

s
’”

E"Q

= What is the optimal binary classification hypothesis class?
» How smallcan R(h*) be?



