PROBABLY APPROXIMATELY CORRECT LEARNABILITY

MATTHIEU R BLOCH

A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

1. Dataset
$$\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$$

• $\{\mathbf{x}_i\}_{i=1}^N \text{ drawn i.i.d. from unknown } P_{\mathbf{x}} \text{ on } \mathcal{X}$

• $\{y_i\}_{i=1}^N$ labels with $\mathcal{Y} = \{0,1\}$ (binary classification)

2. Unknown $f: \mathcal{X} \to \mathcal{Y}$, no noise.

3. Finite set of hypotheses \mathcal{H} , $|\mathcal{H}|=M<\infty$

• $\mathcal{H} \triangleq \{h_i\}_{i=1}^M$

4. Binary loss function $\ell:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}^+:(y_1,y_2)\mapsto\mathbf{1}\{y_1
eq y_2\}$

In this very specific case, the true risk simplifies

$$R(h) riangleq \mathbb{E}_{\mathbf{x}y}[\mathbf{1}\{h(\mathbf{x})
eq y\}] = \mathbb{P}_{\mathbf{x}y}(h(\mathbf{x})
eq y)$$

The empirical risk becomes

$$\widehat{R}_N(h) = rac{1}{N}\sum_{i=1}^N \mathbf{1}\{h(\mathbf{x}_i)
eq y_i\}$$

CAN WE LEARN?

Our objective is to find a hypothesis $h^* = \mathrm{argmin}_{h \in \mathcal{H}} \, \widehat{R}_N(h)$ that ensures a small risk

For a fixed $h_i \in \mathcal{H}$, how does $\widehat{R}_N(h_i)$ compares to $R(h_i)$?

Observe that for $h_i \in \mathcal{H}$

• The empirical risk is a sum of iid random variables

$$\widehat{R}_N(h_j) = rac{1}{N}\sum_{i=1}^N \mathbf{1}\{h_j(\mathbf{x}_i)
eq y_i\}$$

•
$$\mathbb{E}\Big[\widehat{R}_N(h_j)\Big] = R(h_j)$$

 $\mathbb{P} \left(\left| \widehat{R}_N(h_j) - R(h_j)
ight| > \epsilon
ight)$ is a statement about the deviation of a normalized sum of iid random variables from its mean

We're in luck! Such bounds, a.k.a, known as *concentration inequalities*, are a well studied subject

CONCENTRATION INEQUALITIES: BASICS

Lemma (Markov's inequality)

Let X be a *non-negative* real-valued random variable. Then for all t > 0

$$\mathbb{P}(X \geq t) \leq rac{\mathbb{E}[X]}{t}$$

Lemma (Chebyshev's inequality)

Let X be a real-valued random variable. Then for all t>0

$$\mathbb{P}(|X-\mathbb{E}[X]|\geq t)\leq rac{\mathrm{Var}(X)}{t^2}$$

Proposition (Weak law of large numbers)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued random variables with finite mean μ and finite variance σ^2 . Then

$$\mathbb{P}\left(\left| rac{1}{N} \sum_{i=1}^N X_i - \mu
ight| \geq \epsilon
ight) \leq rac{\sigma^2}{N \epsilon^2} \qquad \lim_{N o \infty} \mathbb{P}\left(\left| rac{1}{N} \sum_{i=1}^N X_i
ight)
ight)$$

$$-\left.\mu
ight|\geq\epsilon
ight)=0.$$

$$\frac{\operatorname{Prod}}{\operatorname{E}(X)} = \int_{0}^{+\infty} x p_{X}(x) \, dx = \int_{0}^{k} x p_{X}(x) \, dx + \int_{k}^{\infty} p_{X}(x) \, dx$$

$$= \int_{0}^{+\infty} p_{X}(x) \, dx + \int_{k}^{\infty} p_{X}(x) \, dx$$

$$= \int_{0}^{+\infty} p_{X}(x) \, dx$$

$$= \int_{0}^{+\infty} p_{X}(x) \, dx$$

(2)
$$1\{x \ge i\} \in \{0, 1\}$$

 $E(x) \ge E[x \cdot 1\{x \ge i\}] \ge E E[1\{x \ge i\}] = 1$
 $\in \{0, 1\}$

rt

100

• •

(1>0)

$dn \stackrel{2}{=} E P(X \ge E)$

 $\mathbb{P}(X \ge E)$

.

.

Proof: We can boost Markov's mequality
Assume
$$X \in \mathcal{B} \subset \mathbb{R}$$
 Consider $\phi: \mathcal{B} \longrightarrow \mathbb{R}^{+}$ non decreasi
 $\mathbb{P}(X \ge L) = \mathbb{E}\left[\mathcal{A}\{X \ge L\}\right]$ alway \mathcal{A} if $X \ge$
 $= \mathbb{E}\left[\mathcal{A}\{X \ge L\}\mathcal{A}\left\{\phi(X) \ge \phi(L)\right\}\right]$
 $\leq \mathbb{E}\left[\mathcal{A}\left\{\phi(X) \ge \phi(L)\right\}\right]$
 $= \mathbb{P}(\phi(X) \ge \phi(L)) \leq \mathbb{E}(\phi(X))$
 $\phi(L) = boos$
Application: $Y \triangleq |X - \mathbb{E}(X)|$ $\mathbb{P}(|X - \mathbb{E}(X)| \ge L) \leq \mathbb{E}(|X|)$
 $\psi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+} : \mathbb{R} \longrightarrow \mathbb{R}^{2}$
 $\mathbb{P}(|X - \mathbb{E}(X)| \ge L) \leq \mathbb{E}(|X - \mathbb{E}(X)|^{2}) = Va$

 \frown

ing s.t. \[[14(x)]]<00.

sting

-#(x))) F lan(X) E²

.

5

E[2] = 1 ZE(X:) = A Proof: Define 231 ZX: $Var(2) = Var\left(\frac{1}{N}\sum_{i=1}^{N}\right) = \frac{1}{N^2}Var\left(\sum_{i=1}^{N}X_i\right) = \frac{1}{N^2}\sum_{i=1}^{N}Var\left(X_i\right) = \frac{1}{N^2}\sum_{i=1}^{N}Var\left(X_i\right) = \frac{1}{N^2}$

Apply Chebysher's inequality: $\mathbb{P}(|2-\mu| \ge t) \le \frac{\nabla^2}{Nt^2}$ and $\mathbb{P}(\left|\frac{1}{N}\sum_{i=1}^{N} \frac{1}{n}\right| \ge t) \le \frac{\sigma^2}{Nt^2}$

By the law of large number, we know that

$$orall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}} \Big(ig| \widehat{R}_N(h_j) - R(h_j) ig| \geq \epsilon \Big) \leq rac{\mathrm{Var}(\mathbf{1}\{h_j(\mathbf{x}_1) - N\epsilon^2) - N\epsilon^2)}{N\epsilon^2}$$

Given enough data, we can *generalize*

How much data?
$$N=rac{1}{\delta\epsilon^2}$$
 to ensure $\mathbb{P}\Big(\Big|\widehat{R}_N(h_j)-R(h_j)\Big|\geq\epsilon\Big)\leq\delta.$

That's not quite enough! We care about $\widehat{R}_N(h^*)$ where $h^* = \mathrm{argmin}_{h\in\mathcal{H}}\,\widehat{R}_N(h)$

• If $M=|\mathcal{H}|$ is large we should expect the existence of $h_k\in\mathcal{H}$ such that $\widehat{R}_N(h_k)\ll R(h_k)$

$$\mathbb{P}\Big(\left| \widehat{R}_N(h^*) - R(h^*) \right| \geq \epsilon \Big) \leq \mathbb{P}\Big(\exists j : \left| \widehat{R}_N(h_j) - R(h_j) - R(h_j) - R(h_j) - R(h_j) - R(h_j) \Big| \Big) \Big|$$

$$\mathbb{P}\Big(\Big| \widehat{R}_N(h^*) - R(h^*) \Big| \geq \epsilon \Big) \leq rac{M}{N\epsilon^2}$$

If we choose $N \geq \lceil rac{M}{\delta \epsilon^2}
ceil$ we can ensure $\mathbb{P} \Big(\left| \widehat{R}_N(h^*) - R(h^*) \right| \geq \epsilon \Big) \leq \delta.$

That's a lot of samples!

 $rac{1}{1}
eq y_1 \}) \leq rac{1}{N\epsilon^2}$

 $|h_j)| \ge \epsilon$

CONCENTRATION INEQUALITIES: NOT SO BASIC

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i \in [a_i; b_i]$ with $a_i < b_i$. Then for all $\epsilon > 0$

$$\mathbb{P}\left(\left| rac{1}{N} \sum_{i=1}^N X_i
ight| \geq \epsilon
ight) \leq 2 \exp \left(-rac{2N^2 \epsilon^2}{\sum_{i=1}^N (b_i - a_i)^2}
ight)$$

In our learning problem

$$egin{aligned} &orall\epsilon < 0 \quad \mathbb{P}igg(\left| \widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon igg) \leq 2 \exp(-2A) \ &orall \epsilon > 0 \quad \mathbb{P}igg(\left| \widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon igg) \leq 2M \exp(-2A) \end{aligned}$$

We can now choose $N \geq \left\lceil \frac{1}{2\epsilon^2} \left(\ln \frac{2M}{\delta} \right) \right\rceil$ M can be quite large (almost exponential in N) and, with enough data, we can generalize h^* . How about learning $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$?

$N\epsilon^2)$

$(2N\epsilon^2)$

Lemma.

If
$$orall j \in \mathcal{H} \left| \widehat{R}_N(h_j) - R(h_j)
ight| \leq \epsilon$$
 then $\left| R(h^*) - R(h^{\sharp})
ight| \leq 2\epsilon.$

How do we make $R(h^{\sharp})$ small?

- Need bigger hypothesis class $\mathcal{H}!$ (could we take $M o \infty$?)
- Fundamental trade-off of learning

11 / 15

Proof:

$$| k(k^{*}) - R(k^{*}) | = | R(k^{*}) - \hat{R}_{N}(k^{*}) + \hat{R}_{N}(k^{*}) - R(k^{*}) |$$

$$\leq | R(k^{*}) - \hat{R}_{N}(k^{*}) + | \hat{R}_{N}(k^{*}) - R(k^{*}) |$$

$$(2)$$

Yi IR, (hj)-R(h,)|≤∈ hence IR, (h*)-R(h*)]≤∈ blch*∈K () By def of $h^{\pm} R(h^{\pm}) \leq R(h^{\pm}) \leq \hat{R}_{\mu}(h^{\pm}) + \in (\#)$ Similarly, by def h* $\hat{R}_{N}(h^{*}) \leq \hat{R}_{N}(h^{*}) \leq R(h^{*}) + E$ ble $h^{*} \in \mathcal{U}(**)$

Hence | R, (h*) - R(h*) | SE (2)

Therefore $|R(R^*) - R(R^*)| \leq 2E$

周

PROBABLY APPROXIMATELY CORRECT LEARNABILITY

Definition. (PAC learnability)

A hypothesis set $\mathcal H$ is (agnostic) PAC learnable if there exists a function $N_{\mathcal H}:]0;1[^2 o\mathbb N$ and a learning algorithm such that:

- for very $\epsilon, \delta \in]0; 1[$,
- for every $P_{\mathbf{x}}, P_{y|\mathbf{x}},$
- when running the algorithm on at least $N_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples, the algorithm returns a hypothesis $h \in \mathcal{H}$ such that

$$\mathbb{P}_{\mathbf{x}y}\Big(ig|R(h)-R(h^{\sharp})ig|\leq\epsilon\Big)\geq 1-\delta$$

The function $N_{\mathcal{H}}(\epsilon, \delta)$ is called *sample complexity*

We have effectively already proved the following result

Proposition.

A finite hypothesis set \mathcal{H} is PAC learnable with the Empirical Risk Minimization algorithm and with sample complexity

$$N_{\mathcal{H}}(\epsilon,\delta) = \lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ceil$$

Ideally we want $|\mathcal{H}|$ small so that $R(h^*)pprox R(h^{\sharp})$ and get lucky so that $R(h^*)pprox 0$

In general this is *not* possible

- Remember, we usually have to learn $P_{y|\mathbf{x}}$, not a function f
- Questions
 - What is the optimal binary classification hypothesis class?
 - How small can $R(h^*)$ be?