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Bayes Classifiers

Matthieu R. Bloch

1 Bayes classifier

For ease of notation, let us revisit our learning model with a slight change in notation to clearly
indicate the random variables. Our supervised learning problem consists of:

1. A dataset D ≜ {(X1, Y1), · · · , (XN , YN )}

• {Xi}Ni=1 drawn i.i.d. from an unknown probability distribution PX on X ;
• {Yi}Ni=1 with Y = {0, 1, · · · ,K}.

2. An a priori unknown labeling probability PY |X

3. A binary loss function ℓ : Y × Y → R+ : (y1, y2) 7→ 1{y1 6= y2}.

Since our goal is to characterize the minimum true risk, we need to specify a class of hypotheses H
at this point. Note that the (true) risk of a classifier h is

R(h) ≜ EXY (1{h(X) 6= Y }) = PXY (h(X) 6= Y ) (1)

To estimate the smallest risk that we can ever hope to achieve, we assume for now that we know
PX and PY |X . This is not a realistic assumption since the whole point of learning is to figure out
what PY |X is and PX might never be learned at all; however, the risk of any realistic classifier can
certainly be no less than the risk of the best classifier that knows PX and PY |X , which can therefore
serve as the ultimate benchmark of performance. For notational convenience, we introduce the
following:

• the a priori class probabilities are denoted πk ≜ PY (k).

• the a posteriori class probabilities are denoted ηk(x) ≜ PY |X(k|x) for all x ∈ X .

Lemma 1.1. The classifier hB(x) ≜ argmaxk∈[0;K−1] ηk(x) is optimal, i.e., for any classifier h, we have
R(hB) ⩽ R(h). In addition

R(hB) = EX

(
1− max

k
ηk(X)

)
Proof. For a classifier h and for each 0 ⩽ k ⩽ K−1, let us define the corresponding decision region
Γk(h) ≜ {x : h(x) = k}. Then note that

1−R(h) = P(h(X) = Y ) =

K−1∑
k=0

πkP(h(X) = k|Y = k) =

K−1∑
k=0

∫
Γk(h)

πkpX|Y (x|k)dx. (2)

To minimize the risk, we should maximize (2). The expression is maximum when the regions are
such that πkpX|Y (x|k) takes the maximum possible value (over the K possibilities) in the region
Γk(h). Said differently, the region Γk(h) must be defined as

Γk(h) = {x ∈ X : ∀ℓ ∈ J0,K − 1KπℓpX|Y (x|ℓ) ⩽ πkpX|Y (x|k)}. (3)
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The case of equality can be broken arbitrarily. The classifier leading to these decision regions is
therefore

hB(x) = argmax
k

πkpX|Y (x|k) = argmax
k

ηk(x)pX(x) = argmax
k

ηk(x). (4)

The risk associated with hB is then

RB = EXY

(
1
{
hB(X) 6= Y

})
= 1− EXY

(
1
{
hB(X) = Y

})
(5)

= 1− EXY

(
1

{
Y = argmax

k

ηk(X)

})
(6)

= 1− EX

(
max
k

ηk(X)

)
. (7)

In the last step, we have used that

EXY

(
1

{
Y = argmax

k

ηk(X)

})
= EX

(∑
y

PY |X(y|X)1

{
y = argmax

k

ηk(X)

})

= EX

(
PY |X(argmax

k

ηk(X)|X)

)
= EX

(
max
k

PY |X(k|X)

)
.

Note that we are implicitly assuming that ties have been broken with some arbitrary but fixed choice
when defining the argmax. ■

The classifier hB is called the Bayes classifier and RB ≜ R(hB) is called the Bayes risk.

2 Alternative forms of the Bayes classifier

You might have encountered several different forms of the Bayes classifier.

• hB(x) ≜ argmaxk∈[0;K−1] ηk(x)

• hB(x) ≜ argmaxk∈[0;K−1] πkpX|Y (x|k)

• For K = 2 (binary classification), the Bayes classifier can be expressed as a log-likelihood ratio
test

log
pX|Y (x|1)
pX|Y (x|0)

≷ log
π0

π1

• If all classes are equally likely π0 = π1 = · · · = πK−1

hB(x) ≜ argmax
k∈[0;K−1]

pX|Y (x|k)

Example 2.1. Assume X|Y = 0 ∼ N (0, 1) and X|Y = 1 ∼ N (1, 1). Let us compute the Bayes risk
for π0 = π1. From Lemma 1.1, we have

RB = 1− EX

(
max
k

ηk(X)

)
(8)
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= 1−
∫ ∞

−∞
pX(x)max

k
ηk(x)dx (9)

= 1−
∫ ∞

−∞
max
k

pX|Y (x|k)πkdx (10)

= 1− 1

2

∫ 1
2

−∞

1√
2π

e−
x2

2 dx− 1

2

∫ ∞

1
2

1√
2π

e−
(x−1)2

2 dx (11)

=
1

2
(1− Φ( 12 )) +

1

2

∫ 1
2

−∞

1√
2π

e−
(x−1)2

2 dx (12)

=
1

2
Φ(− 1

2 )) +
1

2

∫ − 1
2

−∞

1√
2π

e−
v2

2 dv (13)

= Φ(− 1
2 ), (14)

where we have made use of Φ ≜ Normal CDF.

In practice we do not know PX and PY |X , so what is the use of the Bayes classifier? A natural,
but not always wise, solution consists in using plugin methods, in which we use the data to learn the
distributions and plug the estimates in the corresponding Bayes classifier. We will see examples of
such methods in the next lecture.

3 Beyond the binary loss function

The previous discussion extends beyond the binary loss function. Given a valid loss ℓ : Y×Y → R+,
the risk of a hypothesis h is R(h) ≜ EXY (ℓ(h(X), Y )). Following the reasoning of the proof of
Lemma 1.1, we can derive the Bayes classifier as follows.

R(h) =
∑
x

∑
y

pX,Y (x, y)ℓ(h(x), y) (15)

=
∑
k

∑
x∈Γk(h)

∑
m

pX|Y (x|m)πmℓ(k,m). (16)

Hence the Bayes’s classifier is then

hB(x) = argmin
k

(∑
m

πmpX|Y (x|m)ℓ(k,m)

)
. (17)

Without additional assumptions, this expression does not simplify much further. The elegant form
obtained in Lemma 1.1 is largely the consequence of using a binary loss function.

4 To go further

A discussion of the Bayes classifier can be found in [1, Section 2.4].
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