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Nearest Neighbor Classifiers

Matthieu R. Bloch

1 Nearest-neighbor classifier

In this section, we go back to our usual notation for our training datasetD ≜ {(x1, y1), · · · , (xN , yN )},
in which we do not explicitly distinguish random variables with capital letters.

We now investigate what is perhaps the simplest classifier of all. The nearest-neighbor (NN) clas-
sifier is hNN(x) ≜ yNN(x) where NN(x) ≜ argmini ∥xi − x∥. The risk of NN classifier conditioned
on fixed values of x and xNN(x) is then

RNN(x, xNN(x)) = P
(
yNN(x) ̸= y|x, xNN(x)

)
(1)

=
∑
k

P(y = k|x)P
(
yNN(x) ̸= k|xNN(x)

)
(2)

=
∑
k

ηk(x)(1− ηk(xNN(x))) (3)

=
∑
k

ηk(xNN(x))(1− ηk(x)), (4)

where in (2) we have used the assumption that the dataset is generated independent and identically
distributed (i.i.d.). How well does the risk RNN ≜ Ex,xNN(x))

(
RNN(x, xNN(x))

)
compare to the Bayes

risk for large N ? The result is actually quite surprising as we show next.

Lemma 1.1. Let x, {xi}Ni=1 be i.i.d. ∼ Px in a separable metric space X . Let xNN(x) be the nearest
neighbor of x. Then xNN(x) → x with probability one as N → ∞

Before getting in the proof, let us analyze the assumptions of the lemma. Intuitively, the lemma
is saying that if we sample enough data, we will eventually either sample any data point x or at
least get close to it. Stating that X is a separable metric space is just a very mathematical of saying
that there will not be points that we would not be able to approach by sampling sufficiently many
points. The term separable is a bit ill-chosen, X separable means that it contains a countable and
dense subset. The good news is that many metric spaces are separable, including compact metric
spaces.
Proof. Let d(·, ·) be the metric associate to X . For any x ∈ X and r > 0 define the ball centered at
x with radius r

Sx(r) ≜ {x′ ∈ X : d(x, x′) ⩽ r}. (5)

Consider now x0 ∈ X such that ∀r > 0, P(Sx0(r)) > 0; in other words, x0 is not a “lost” point that
you would not be able to sample exactly or close to with Px. Then for any r > 0, the probability
that the closest point to x0 in the dataset {xi}Ni=1 is more than r away is

P
(

min
k∈J1,NK d(xk, x0) ⩾ r

)
= (1− P(Sx0(r)))

N −→
N→∞

0. (6)

1



ECE 6254 - Summer 2020 - Lecture 3 v1.0 - revised May 23, 2020

We now show that P
(
xNN(x0) ↛ x0

)
= 0, which requires a bit more care. In fact,

P
(
xNN(x0) ↛ x0

)
= P

(
∃k ∈ N∗ : ∀N ∈ N∗∃n0 ⩾ N : min

i∈J1,n0K d(xi, x0) ⩾
1

k

)
(7)

= P
(
∃k ∈ N∗ : ∀i ∈ N∗ d(xi, x0) ⩾

1

k

)
(8)

⩽
∑
k⩾1

P

⋂
i⩾1

{∀j ⩽ i d(xj , x0) ⩾
1

k
}

 (9)

⩽
∑
k⩾1

lim
i→∞

P
(
∀j ⩽ i d(xj , x0) ⩾

1

k

)
(10)

= 0. (11)

Note that the justification of the above inequalities is as follows:

• (8) is by definition of the nearest neighbor;

• (9) is by the union bound;

• (10) is by continuity of probabilities and the fact that the events Ai ≜ {∀j ⩽ i d(xj , x0) ⩾
1
k} form a decreasing sequence;

• (11) follows by (6).

We now need to prove that the probability of sampling a point x for which the above reasoning is
not true vanishes. Specifically let N be the set of points for which ∃rx > 0 such that P(Sx(rx)) = 0.
By definition of X being separable, there exists a countable dense subset A of X . In particular,
for any x ∈ N , there exists ax ∈ A such that ax ∈ Sx(

rx
3 ). Note that x ∈ Sax(

rx
2 ) ⊂ Sx(rx).

Consequently,

0 ⩽ P
(
Sax(

rx
2 )
)
⩽ P(Sx(rx)) = 0. (12)

Therefore, N is included in
⋃

ax Sax(
rx
2 ), which is countable. Therefore,

P(N ) ⩽
∑
ax

P
(
Sax(

rx
2 )
)
= 0, (13)

which is what we needed. ■

Using Lemma 1.1, we now establish the following.

Lemma 1.2. Let X be a separable metric space and consider a binary classifier with K = 2 and
Y = {0, 1}. Let p(x|y = 0), p(x|y = 1) be such that, x is either a continuity point of p(x|y = 0) and
p(x|y = 1) with probability one, or a point of non-zero probability measure. Then, as N → ∞,

R(hB) ⩽ R(hNN) ⩽ 2R(hB)(1−R(hB))

This result states that the risk of the NN classifier cannot be too far from the Bayes risk. Specif-
ically, since we are looking here at binary loss functions we have 0 ⩽ 1 − R(hB) ⩽ 1 and the risk
of the NN classifier is at most twice the Bayes risk! In other words, simply assigning the label of
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the nearest point gives us close to the best performance when we have enough data points. The big
catch behind the result is that there are two assumptions that might fail to hold in practice:

• We may not have enough data points, so that the nearest neighbor is actually very far from
the point we are trying to predict. This is particularly true in high dimensions.

• Efficiently computing the nearest neighbor can be computationally tricky.

Proof. We need to consider two possible situations for x∗ ∈ X .

• If x∗ is a point of non-zero probability measure, i.e., such that P(x∗) = p > 0, then
P
(
x∗ ̸= xNN(x∗)

)
= (1− p)N →N→∞ 0. Consequently, as N gets large, one eventually gen-

erates the point x∗ in the data set so that xNN(x∗) = x∗, at which point

R(x∗, xNN(x∗)) = R(x∗, x∗) = 2η0(x∗)(1− η0(x∗)). (14)

• If x∗ a continuity point of p(x|y = 0) and p(x|y = 1) with probability one, then as N → ∞
we must have η0(xNN(x∗)) → η0(x∗) and η1(xNN(x∗)) → η1(x∗) with probability one by
assumption. Consequently, with probability one

lim
N→∞

R(x∗, xNN(x∗)) = η0(x∗)(1− η0(x∗)) + η1(x∗)(1− η1(x∗)) (15)

= 2η0(x∗)(1− η0(x∗)). (16)

Now recall the definition of the Bayes classifier as hB(x∗) = argmaxk ηk(x
∗). This means that

RB(x∗) = Ey|x∗

(
1

{
argmin

k

ηk(x∗) = y

})
= min

k
ηk(x∗) = min (η0(x∗), 1− η0(x∗)) . (17)

Consequently,

RB(x∗)(1−RB(x∗)) = η0(x∗)(1− η0(x∗)). (18)

Therefore, we have proved that

lim
N→∞

R(x∗, xNN(x∗)) = 2RB(x∗)(1−RB(x∗)). (19)

It remains to look at the risk averaged over x∗. Since the risk is bounded, by the dominated conver-
gence theorem,

lim
N→∞

Ex∗
(
R(x∗, xNN(x∗))

)
= Ex∗

(
lim

N→∞
R(x∗, xNN(x∗))

)
= Ex∗(R(x∗, x∗)) (20)

Now,

Ex∗(R(x∗, x∗)) = 2Ex∗
(
RB(x∗)(1−RB(x∗))

)
(21)

= 2
(
Ex∗
(
RB(x∗)

)
− Ex∗

(
RB(x∗)2

))
(22)

= 2

Ex∗
(
RB(x∗)

)
− Ex∗

(
RB(x∗)

)2
+ Ex∗

(
RB(x∗)

)2 − Ex∗
(
RB(x∗)2

)︸ ︷︷ ︸
≜−Var(RB(x∗))

 (23)

⩽ 2Ex∗
(
RB(x∗)

) (
1− Ex∗

(
RB(x∗)

))
. (24)

Since R(hB) ≜ Ex∗
(
RB(x∗)

)
, the result follows. ■
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There are several extensions of this result. If there are M > 2 classes, one can show

R(hB) ⩽ R(hNN) ⩽ 2R(hB)

(
1− M

M − 1
R(hB)

)
. (25)

One can also improve the bound by considering a K-NN classifier instead of the 1-NN classifier.
In words, the K-NN classifier pools the labels of its K nearest neighbors and takes a majority vote
to output the label. Formally, the K-NN classifier outputs

hK−NN(x) = argmax
ℓ

1

K

∑
i:xi∈NK,D(x)

1{yi = ℓ} , (26)

where NK,D(x) indicates the set of K nearest neighbors of x in the dataset D. One can show the
following.

Theorem 1.3. For all distributions and K ⩾ 1, as N → ∞ we have

R(hB) ⩽ R(hK−NN) ⩽ R(hB)

(
1 +

√
2

K

)
. (27)

The larger K, the closer R(hK−NN) is to R(hB). This property is called consistency of the clas-
sifier.

Definition 1.4. A classifier hN on a dataset of sizeN is consistent (or asymptotically Bayes-risk efficient)
for a given distribution Pxy if1

lim
N→∞

R(hN ) ≜ lim
N→∞

E(P(hN (x) ̸= y)) = R(hB). (28)

If the same property holds independently of Pxy, the classifier is called universally consistent.

Intuitively, from Theorem 1.3, the K-NN classifier should be universally consistent. However,
one has to state this carefully because the proof of Theorem 1.3 assumes thatK is fixed andN → ∞.
Taking K → ∞ in (27) might not make much sense. The following is true.

Proposition 1.5. If N → ∞, K → ∞ while K
N → 0, then

lim
N→∞

R(hK−NN) ≜ lim
N→∞

E
(
P
(
hK−NN(x) ̸= y

))
= R(hB). (29)

This result is saying that, given enough data, the NN classifier will perform just as well as the
optimal Bayes classifier without knowing the underlying distribution. Unfortunately, in practice N
is fixed and one must carefully choose K to obtain good performance. This is a problem of model
selection that we will revisit later on. For now, let us just point out what is a bad idea to select K.
If you were to select K by minimizing the empirical risk (as maybe suggested by what we discussed
in Lecture 2), you would find that

R̂N (h1-NN) =
1

N

N∑
i=1

1{h1(xi) = yi} = 0. (30)

1The expectation is over the dataset {(xi, yi)}Ni=1, upon which hN is dependent, as well as the test point (x, y).
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2 To go further

Discussions of the Nearest Neighbor classifier can be found in [1, Section 2.3.2] and [2, Section
1.4.2]. The analysis of the risk of Nearest Neighbor classifiers is adapted from [3].
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