
ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Plugin Classifiers

Matthieu R. Bloch

1 Plugin classifiers

Plugin classifier are a type of classifiers that attempt tomimic the Bayes classifier by learning estimates
of the data distribution from the data, and plugging the result in the formula of the Bayes classifier.
Recall from the expression of the Bayes classifier

hB(x) ≜ argmax
k∈[0;K−1]

ηk(x) (1)

that we only need to estimate ηk(x) ≜ Py|x(k|x). However, some classifiers sometimes estimate the
joint distributionPx,y, which is more than we need. A generative classifier learnsPx,y; this allows one
to compute the distribution that “generates” the data in every class Px|y. A discriminatory classifier
only learns Py|x. The estimations can be of two types. The estimation is parametric if we impose an
underlying model (Gaussian, multinomial, etc.) on the distributions and fit the parameters. The
estimation is non-parametric if no model is assumed.

TheK-NN classifiers are non-parametric discriminative plugin classifiers. They are non-parametric
by definition, but their discriminative nature may not be obvious. We can see this with the follow-
ing heuristic reasoning. Assume that there are L distinct classes, and consider a region R around a
point x∗. If R is small enough, we have

p ≜ P(x ∈ R) =

∫
R
Px(x)dx ≈ Px(x∗)vol(R) . (2)

If the data set contains N points, the probability that ℓ points fall in R is
(
N
ℓ

)
pℓ(1− p)N−ℓ. As N

gets really large, this converges to the mean K ≜ Np, which together with (2) suggest that

Px(x∗) ≈
K

Nvol(R)
. (3)

The same reasoning can be applied to the Nℓ points of the data set belonging to class ℓ. The proba-
bility Px|y(x∗|ℓ) of generating a class ℓ point x∗ is

Px|y(x∗|ℓ) ≈
Kℓ

Nℓvol(R)
, (4)

where Kℓ is the average number of points of class ℓ in R. Finally, note that the probability of
having a data point in class ℓ can be estimated as Nℓ/N .1 Consequently, we can approximate the
probability of class ℓ given x∗ by

P (ℓ|x∗) = P (x∗|ℓ)P (ℓ)

P (x∗)
≈ Kℓ

Nℓvol(R)

Nℓ

N

Nvol(R)

K
=

Kℓ

K
. (5)

Hence viewing R as the region containing the K nearest neighbors of x∗ (by definition of R and
K), we see that the K-NN classifier computes an estimate of Py|x.

1More on this later, we will call that the maximum likelihood estimate.

1

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

2 Naive Bayes classifier

Although the idea behind plugin estimators is rather clear, one encounters many issues in practice.
In particular, estimating densities in high dimension becomes really challenging because obtaining
the large number of samples required is unrealistic or even sometimes unfeasible. The only solution
to circumvent this is to impose some modeling assumptions, typically in the form of a parametric
model. The number of parameters to estimate is typically small and the parameters can be estimated
even with a small number of samples.

Consider a dataset D ≜ {(xi, yi)}Ni=1 with feature vectors xj ∈ Rd and labels yi ∈ J1,KK. The
naive bayes assumption is to assume that the features are conditionally independent given the class
label. Mathematically, we assume that the conditional distribution Px|y factorizes as

Px|y ≜ Px1,··· ,xd|y =

d∏
j=1

Pxj |y. (6)

This assumption is unlikely to be true in practice. For instance, income and zip codes are likely
to be dependent. The main benefit of the naive Bayes assumption is to simplify the estimation of
the densities. Instead of estimating a multivariate density Px|y, one only has to estimate d univari-
ate densities Pxj |y. In addition, one can use distinct models for the univariate densities, which is
convenient if some features are categorical while others are numerical.

The general procedure can be summarized as follows.

1. Estimate the a priori class densities π̂k ≜ Py(k) for k ∈ J1,KK.
2. Estimate the conditional class densities Pxj |y for j ∈ J1, dK and k ∈ J1,KK.

We will revisit estimation techniques on several occasions, and for now we establish the following.

Lemma 2.1. The Maximum Likelihood Estimate (MLE) of the prior class densities is

π̂k =
Nk

N
where Nk ≜ |{i ∈ J1, NK : yi = k}| =

N∑
i=1

1{yi = k} . (7)

Proof. Since the true class densities πk are unknown, we can think of Py as being dependent on
deterministic unknown parameter θ ≜ {πk}Kk=1, denoted Pθ. Given the data {yi}Ni=1, the MLE is
the parameter θ that maximizes the likelihood of the data Pθ({yi}Ni=1):

θMLE ≜ argmax
θ

Pθ({yi}Ni=1). (8)

In our setting, since we assume that the dataset is generated independent and identically distributed
(i.i.d.), we have

Pθ({yi}Ni=1) =

N∏
i=1

Pθ(yi) =

N∏
i=1

K∏
k=1

π
1{yi=k}
k =

K∏
k=1

π
∑N

i=1 1{yi=k}
k =

K∏
k=1

πNk

k . (9)

Since x → logx is an increasing function, we can maximize the log-likelihood and write

θMLE ≜ argmax
θ

logPθ({yi}Ni=1) =

K∑
k=1

Nk logπk. (10)

2

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Since
∑K

k=1 πk = 1 by definition, this is a constrained optimization problem, which we can never-
theless solve by using Lagrange multipliers. Specifically, for λ ∈ R we set

L =

K∑
k=1

Nk logπk − λ

(
K∑

k=1

πk − 1

)
. (11)

Then, for every k ∈ J1,KK
∂L
∂πk

= 0 ⇒ Nk

πk
− λ = 0 ⇒ πk =

Nk

λ
. (12)

To find the value of λ, note that

K∑
k=1

πk = 1 =
1

λ

K∑
k=1

Nk =
N

λ
(13)

so that λ = N . Note that we have actually ignored the fact that every πk was also constrained to be
positive. We got lucky and our solution satisfies this without enforcing the constraints explicitly. ■

3 Review of Maximum Likelihood Estimate

Consider a parametric density pθ(x) with unknown parameter θ ∈ Rd and assume that we have
i.i.d. generated data points {xi}Ni=1. The likelihood of the data points is defined as

L(θ) ≜ Pθ

(
{xi}Ni=1

)
=

N∏
i=1

pθ(xi) (14)

Note that we view L(θ) as a function of θ alone, treating the data as fixed. It is often convenient to
work with the log-likelihood

ℓ(θ) ≜ logL(θ) ≜ logPθ

(
{xi}Ni=1

)
=

N∑
i=1

log pθ(xi), (15)

especially because any product becomes a sum.

Definition 3.1. The Maximum Likelihood Estimate (MLE) is θMLE = argmaxθ L(θ)

Sometimes, there exists a closed-form solution for the MLE; however, more often than not,
we need to resort to numerical solutions. The following example illustrates a situation in which we
obtain an optimization problemwhen forming theMLE, which is representative of typical situations
encountered in machine learning.

Example 3.2. Assume that we have access to pairs of data {(xi, yi)}Ni=1 with yi ∈ R and Xi ∈ Rd.
We also assume that all yi’s are conditionally independent of each other given the xi’s, and satisfy yi =
θ⊺xi + ni where ni ∼ N (0, σ2) and all ni’s are independent of each others. Then the MLE for θ is

θMLE = argmin
θ

N∑
i=1

|yi − θ⊺xi|2 . (16)

3

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Notice that we do not specify the distribution of the xi’s, since all we are trying to do is estimate the
conditional distribution of y given x. To obtain the result, we start by forming the likelihood

L(θ) ≜
N∏
i=1

pθ(yi|xi) ≜
N∏
i=1

(
1√
2πσ

exp
(
− (yi − θ⊺xi)2

2σ2

))
(17)

The log-likelihood is then

ℓ(θ) ≜ −
N∑
i=1

log
√
2πσ −

N∑
i=1

(yi − θ⊺xi)2

2σ2
, (18)

so that

θMLE ≜ argmax
θ

ℓ(θ) ≜ argmin
θ

N∑
i=1

|yi − θ⊺xi|2 . (19)

Once your reach that point, you typically run your favorite optimization algorithm. In this specific
example, however, it turns out that there is a closed form solution. In fact, upon aggregating all the yi’s
in a vector y ∈ RN and all the xi’s in a matrix X ∈ RN×d, which rows are x⊺i , note that the above
minimization is can be rewritten

θMLE ≜ argmin
θ

‖y− Xθ‖22 (20)

Note that

R(θ) ≜ ‖y− Xθ‖22 = (y− Xθ)⊺(y− Xθ) = ‖y‖22 − 2y⊺Xθ + θ⊺X⊺Xθ, (21)

so that
∂R

∂θ
(θ) = −2X⊺y+ 2X⊺Xθ (22)

Assuming that X⊺X is invertible, we obtain

∂R

∂θ
(θ) = 0 ⇔ θ = (X⊺X)−1X⊺y. (23)

4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is an attempt to improve on of the shortcomings of Naive
Bayes, namely the assumption that given a label, the features are independent. Instead, LDAmodels
the features as jointly Gaussian, with a covariance matrix that is class-independent.

Specifically, let x = [x1, · · · , xd]
⊺ ∈ Rd be a random feature vector and let y be the label. LDA

posits that given y the feature vector x has a Gaussian distribution Px|y ∼ N (µk,Σ). Note that the
mean µkis class dependent but the covariance matrix Σ is class independent. It will be convenient
to denote a Gaussian multivariate distribution with parameters µ and Σ by

ϕ(x;µ,Σ) ≜ 1

(2π)
d
2 |Σ| 12

exp
(
−1

2
(x− µ)⊺Σ−1(x− µ)

)
. (24)

Given this model, LDA then performs a parameter estimation of µk and Σ, as well as of the
prior πk on the data.

4

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Lemma 4.1. Let Nk be the number of data points with label k. The MLEs for LDA are

∀k π̂k =
Nk

N
, (25)

∀k µ̂k =
1

Nk

∑
i:yi=k

xi (26)

Σ̂ =
1

N

K−1∑
k=0

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)
⊺ (27)

Proof. TheMLE for the prior class distributions was already derived in Lecture 4. What is perhaps
a bit surprising is that the joint MLE for all the parameters θ ≜ ({πk}k, {µk},Σ) takes the form
given above. The likelihood of the parameters is

L(θ) =
N∏
i=1

K−1∏
k=0

π
1{yi=k}
k ϕ(xi;µk,Σ)1{yi=k} (28)

so that the log-likelihood takes the form

ℓ(θ) =

N∑
i=1

K−1∑
k=0

1{yi = k}
(
lnπk − 1

2
(xi − µk)

⊺Σ−1(xi − µk)

)
− N

2
ln(2π)− N

2
ln |Σ|

(29)

=

K−1∑
k=0

Nk lnπk︸ ︷︷ ︸
ℓ1(θ)

+

K−1∑
k=0

N∑
i=1

−1{yi = k}
2

(xi − µk)
⊺Σ−1(xi − µk)−

N

2
ln(2π)− N

2
ln |Σ|︸ ︷︷ ︸

ℓ2(θ)

.

(30)

Note that {πk} do not interact with {µk} and Σ. Consequently, the MLE of {π}k is the one we
studied previously and πk = Nk

N where Nk =
∑N

i=1 1{yi = k}.
Let us focus on maximizing ℓ2(θ). Taking the gradient with respect to µk and setting it to 0

yields

∂ℓ2(θ)

∂µk

=

K−1∑
k=0

N∑
i=1

−1{yi = k}
2

(
−2Σ−1xi + 2Σ−1µk

)
(31)

= Σ−1

 ∑
xi:yi=k

xi −Nkµk

 (32)

= 0 (33)

Conveniently, note that Σ−1 (assumed non-singular) does not enter the equation and we obtain
µk = 1

Nk

∑
xi:yi=k xi.

5

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Finally, to take the gradient with respect to Σ, we rewrite ℓ2(θ) as

ℓ2(θ) =

K−1∑
k=0

N∑
i=1

−1{yi = k}
2

tr
(
(xi − µk)

⊺Σ−1(xi − µk)
)
− N

2
ln(2π)− N

2
ln |Σ| (34)

=
−1

2
tr

Σ−1
K−1∑
k=0

∑
xi:yi=k

(xi − µk)(xi − µk)
⊺

︸ ︷︷ ︸
≜S

− N

2
ln(2π)− N

2
ln |Σ| (35)

we obtain (check the matrix cookbook for the derivation rules)

∂ℓ2(θ)

∂Σ
= −1

2

(
−Σ−1SΣ−1 −NΣ−1

)
=

1

2
Σ−1(SΣ−1 −NI) = 0 (36)

Again, forΣ−1 non singular, we obtainΣ = S
N . Note that we have not been particularly careful in

checking that we are indeed maximizing the likelihood. ■

You might notice that the covariance estimator is biased, but the bias vanishes as the number of
points gets large. In practice, you could choose any other estimator of your liking, we will discuss
this again in the context of bias-variance tradeoff.

Lemma 4.2. The LDA classifier is

hLDA(x) = argmin
k

(
1

2
(x− µ̂k)

⊺Σ̂
−1

(x− µ̂k)− log π̂k

)
(37)

For K = 2, the LDA classifier is a linear classifier.

Proof. The first part of the lemma follows by remembering that for a plug-in classifier, we have
h(x) ≜ argmaxk ηk(x). Here,

argmax
k

ηk(x) = argmax
k

Py|x(k|x) (38)

(a)
= argmax

k

Px|y(x|k)π̂k (39)

(b)
= argmax

k

(
logPx|y + log π̂k

)
(40)

= argmax
k

(
− log

[
(2π)

d
2

∣∣∣Σ̂∣∣∣ 12]− 1

2
(x− µ̂k)

⊺Σ̂
−1

(x− µ̂k) + log π̂k

)
(41)

(c)
= argmin

k

(
1

2
(x− µ̂k)

⊺Σ̂
−1

(x− µ̂k)− log π̂k

)
, (42)

where (a) follows by Bayes’ rule and the fact that Px does not depend on k; (b) follows because
x 7→ logx is increasing; (c) follows by dropping all the terms that do not depend on k and the fact
that argmaxx f(x) = argminx −f(x).

6

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

For K = 2, notice that the classifier is effectively performing the test

η0(x) ≶ η1(x) ⇔
1

2
(x− µ̂0)

⊺Σ̂
−1

(x− µ̂0)− log π̂0 ≷ 1

2
(x− µ̂1)

⊺Σ̂
−1

(x− µ̂1)− log π̂1 (43)

⇔ −µ̂⊺
0Σ̂

−1
x+

1

2
µ̂⊺

0Σ̂
−1

µ̂0 − log π̂0 ≷ −µ̂⊺
1Σ̂

−1
x+

1

2
µ̂⊺

1Σ̂
−1

µ̂1 − log π̂1

⇔ (µ̂1 − µ̂0)
⊺Σ̂

−1︸ ︷︷ ︸
≜w

x+
1

2
µ̂⊺

0Σ̂
−1

µ̂0 − log π̂0 −
1

2
µ̂⊺

1Σ̂
−1

µ̂1 + log π̂1︸ ︷︷ ︸
≜b

≷ 0 (44)

⇔ w⊺x+ b ≷ 0. (45)

The setH ≜ {x ∈ Rd : w⊺x+b = 0} is a hyperplane, which is an affine subspace ofRd of dimension
d− 1. H acts as a linear boundary between the two classes that we are trying to distinguish, and the
test in (45) is simply checking on what side of the hyperplane the point x lies. ■

To conclude on LDA, note that the generative model Px|y ∼ N (µ,Σ) is rarely accurate. In
addition, there are quite a few parameters to estimate, including K − 1 class priors, Kd means,
1
2d(d + 1) elements of covariance matrix. This works well if N � d but works poorly if N � d
without other tricks (dimensionality reduction, structured covariance) that we will discuss later.

An natural extension of LDA is Quadratic Discriminant Analysis (QDA), in which we allow
the covariance matrix Σk to vary with each class k. This results in a quadratic decision boundary
instead of the linear boundary established in Lemma 4.2. However, perhaps the biggest issue with
LDA is, in Vapnik’s words, that ”one should solve the [classification] problem directly and never solve
a more general problem as an intermediate step [such as modeling P (x|y)].”. With LDA, as should be
clear from Lemma 4.1, we are actually modeling the entire joint distribution Px,y, when we really
only care about ηk(x) for classification.

With Vapnik’s word of caution in mind, let us revisit one last time the binary classifier with
LDA. You should check for yourself that

η1(x) =
π̂1ϕ(x; µ̂1, Σ̂)

π̂1ϕ(x; µ̂1, Σ̂) + π̂0ϕ(x; µ̂0, Σ̂)
=

1

1 + exp(−(w⊺x+ b))
, (46)

where w and b are defined as per (45). In other words, we do not need to estimate the full joint
distribution. All that seems to be required are the parameters w and b, and LDA makes a detour
to compute these parameters as a function of the mean and covariance matrix of a Gaussian distri-
bution. The direct estimation of these parameters leads to another linear classifier called the logistic
regression.

5 Logistic regression

The key idea behind (binary) logistic regression is to assume that η1(x) is of the form

1

1 + exp(−(w⊺x+ b))
≜ 1− η0(x), (47)

and to directly estimate ŵ and b̂ from the data. One therefore obtains an estimate of the conditional
distribution Py|x(1|x) as

η1(x) =
1

1 + exp(−(ŵ⊺x+ b̂))
. (48)

7

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Since the function x 7→ 1
1+e−x is called the logistic map, the corresponding classifier inherited the

name and is defined as

hLR(x) = 1

{
η1(x) ⩾

1

2

}
= 1

{
ŵ⊺x+ b̂ ⩾ 0

}
. (49)

This is again a linear classifier. Note that LDA led to a similar classifier with the specific choice of
parameters

ŵ = Σ̂
−1

(µ̂1 − µ̂0) b =
1

2
µ̂⊺

0Σ̂
−1

µ̂0 −
1

2
µ̂⊺

1Σ̂
−1

µ̂1 + log
π̂1

π̂0
(50)

Note that this not what the MLE of (ŵ, b) would result in, and we will analyze this in more details.

6 MLE for logistic regression

We will start with a standard trick to simplify notation, which consists in defining x̃ = [1, x⊺]⊺ and
θ = [bw⊺]⊺. This allows us to write the logistic model as

η(x) ≜ η1(x) =
1

1 + exp(−θ⊺x̃)
. (51)

To avoid carrying a tilde repeatedly in our notation, we will now simply write x in place of x̃, but
keep in mind that we operate under the assumption that the first component of x is set to one.

Given our dataset {(xi, yi)}Ni=1 the likelihood is L(θ) ≜
∏N

i=1 Pθ(yi|xi), where we don’t try to
model the distribution of xi as mentioned in Example 3.2. For K = 2 and Y = {0, 1}, we obtain

L(θ) ≜
N∏
i=1

η(xi)yi(1− η(xi))1−yi (52)

In case you are not familiar with this way of writing the likelihood, note that

η(xi)yi(1− η(xi))1−yi =

{
η(xi) = η1(xi) if yi = 1

(1− η(xi)) = η0(xi) if yi = 0.
(53)

The log likelihood can therefore be written as

ℓ(θ) ≜ logL(θ) =
N∑
i=1

(yi log η(xi) + (1− yi) log(1− η(xi))) (54)

=

N∑
i=1

(
yi log

1

1 + e−θ⊺x + (1− yi) log
e−θ⊺x

1 + e−θ⊺x

)
(55)

=

N∑
i=1

(
yiθ

⊺xi − log(1 + eθ
⊺xi)
)
. (56)

To find the minimum with respect to (w.r.t.) θ, a necessary condition for optimality is∇θℓ(θ) = 0.
Here, this means that

∇θℓ(θ) =

N∑
i=1

(
yixi −

eθ
⊺xi

1 + eθ
⊺xi

xi

)
=

N∑
i=1

xi

(
yi −

1

1 + e−θ⊺xi

)
= 0. (57)

8

ECE 6254 - Summer 2020 - Lecture 4 v1.1 - revised June 8, 2020

Solving this equation means solving a nonlinear system of d + 1 equations, for which there exists
no clear methodology. Hence, we must resort to a numerical algorithm to find the solution of
argminθ −ℓ(θ).

You should check for yourself −ℓ(θ) is convex in θ, and there exists algorithms with provable
convergence guarantees. We will mention a few specific techniques, such as gradient descent, New-
ton’s method, but there are many more that especially useful in high dimension.

7 Conclusion regarding plug-in methods

Naive Bayes, LDA, and logistic classification are all plugin methods that result in linear classifiers,
i.e., classifiers for which decision boundaries are hyperplanes in Rd. All have advantages and draw-
backs:

• Naive Bayes is plugin method based on a seldom valid assumption (independence of features
given the class), but which scales well to high-dimensions and naturally handles mixture of
discrete and continuous features;

• LDA tends to work well if the assumption regarding the Gaussian distribution of the feature
vectors in a class is valid;

• Logistic classification models only the distribution of Py|x, not Py,x, which is valid for a larger
class of distributions and results in fewer parameters to estimate.

Plugin methods can be useful in practice, but ultimately they are very limited. There are always
distributions for which assumptions are violated and if our assumptions are wrong, the output is
totally unpredictable. It can be hard to verify whether our assumptions are right and plugin methods
often require solving a more difficult problem as an intermediate step, see for instance the detour
made by LDA to obtain a linear model.

9

	Plugin classifiers
	Naive Bayes classifier
	Review of Maximum Likelihood Estimate
	Linear Discriminant Analysis
	Logistic regression
	MLE for logistic regression
	Conclusion regarding plug-in methods

