
ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

Perceptron Learning Algorithm

Matthieu R. Bloch

1 A bit of geometry

Definition 1.1. Dataset {xi, yi}Ni=1 is linearly separable if there exists w ∈ Rd and b ∈ R such that

∀i ∈ J1, NK yi = sgn(w⊺x+ b) yi ∈ {±1}

By definition sgn(x) = +1 if x > 0 and −1 else. The affine set {x : w⊺x + b = 0} is then called a
separating hyperplane.

As illustrated in Fig. 1, it is important to note that H ≜ {x : w⊺x + b = 0} is not a vector
space because of the presence of the offset b It is an affine space, meaning that it can be described
as H = x0 + V , where x0 ∈ H and V is a vector space. Make sure that this is clear and check for
yourself.

x1

x2

H = {w⊺
x+ b = 0}

0

− b

w2

Figure 1: Ilustration of linearly separable dataset

Lemma 1.2. Consider the hyperplaneH ≜ {x : w⊺x+ b = 0}. The vector w is orthogonal to all vectors
parallel to the hyperplane. For z ∈ Rd, the distance of z to the hyperplane is

d(z,H) =
|w⊺z+ b|
∥w∥2

.

Proof. Consider x, x′ in H. Then, by definition, w⊺x+ b = 0 = w⊺x′ + b so that w⊺(x− x′) = 0.
Hence, w is orthogonal to all vectors parallel to H.

Consider now any point z ∈ Rd and a point x0 ∈ H. The distance of z to H is the distance
between z and its orthogonal projection onto H, which we can compute as d(z,H) = |w⊺(z−x0)|

∥w∥2
.

Then,

|w⊺(z− x0)| = |w⊺z+ b| . (1)

■

1

ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

2 The Perceptron Learnign Algorithm

The Perceptron Learnign Algorithm (PLA) was proposed by Rosenblatt to identify a separating
hyperplane in a linearly separarable dataset {(xi, yi)}Ni=1 if it exist. We assume that every vector
x ∈ Rd+1 with x0 = 1, so that we can use the shorthand θ⊺x = 0 to describe a affine hyperplane.
The principle of the algorithm is the following.

1. Start from a guess θ(0).

2. For j ⩾ 1, iterate over the data points (in any order) and update

θ(j+1) =

{
θ(j) + yixi if yi ̸= sgn

(
θ(j)

⊺
xi
)

θ(j) else
(2)

Geometric view of PLA The effect of the PLA update is illustrated in Fig. 2. Note that the update
of θ(j+1) not only changes the overall hyperplane, and not just the associated vector space. This is
best seen in Fig. 2, where the offset changes and not just the slope of the separator.

①✶

①✷

✦
✭❥✮

✇
✭❥✮

❜
✭❥✮

�✐

✁
✂✄☎✰✆✝

✞
✄☎✰✆✝
✟

✇
✭❥✠✶✮

Figure 2: PLA update

Gradient descent view of PLA Consider a loss function called the “perceptron loss” defined as

ℓ(θ) ≜
N∑
i=1

max(0,−yiθ
⊺xi). (3)

Intuitively, the loss penalizes misclassified points (according to θ) with a penalty proportional to
how badly they are misclassified. Setting ℓi(θ) ≜ max(0,−yiθ

⊺xi), we have

∇ℓi(θ) =

0 if yiθ⊺xi > 0

−yixi if yiθ⊺xi < 0

[0, 1]×−yixi if θ⊺xi = 0

(4)

The case of equality θ⊺xi = 0 corresponds to the point where the loss function ℓi(θ) is not differ-
entiable. In such case, we have to use a subgradient of ℓi at θ, which is any vector v such that for all
θ′, ℓi(θ) − ℓi(θ

′) ⩾ v⊺(θ − θ′). A subgradient is not unique and the set of subgradients is usually
denoted ∂ℓi(θ). Let us now apply a stochastic gradient descent algorithm with a step size of 1 to
the loss function. We obtain

2

ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

1. Start from a guess θ(0).

2. For j ⩾ 1, iterate over the data points (in any order) and update

θ(j+1) = θ(j) −∇ℓi(θ) =

θ(j) + yixi if − yiθ

(j)⊺xi > 0

θ(j) if − yiθ
(j)⊺xi < 0

θ(j) − v where v ∈ ∂ℓi(θ) if θ⊺xi = 0

(5)

Note that (5) is almost identical to (2). The PLA udpate rule is essentially a stochastic gradient
descent that treats the case of subgradients with its own rule.

Theorem 2.1. Consider a linearly separable data set {(xi, yi)}Ni=1. The number of updates made by the
PLA because of classification errors is bounded and the PLA eventually identifies a separating hyperplane.

Proof. By assumption, there exists a separating hyperplane H with parameter θ ≜ [bw⊺]⊺. Note
that

min
i

d(xi,H) = min
i

|θ⊺xi|
∥w∥2

. (6)

Upon setting w̃ ≜ w
∥w∥2

and b̃ ≜ b
∥w∥2

, remark that hyperplanes {x : w⊺x + b = 0} and {x :

w̃⊺x + b̃ = 0} are identical and we can assume without loss of generality that we use a parameter
θ̃ = [b̃ w̃⊺]⊺ such that

min
i

d(xi,H) = min
i

∣∣∣θ̃⊺xi∣∣∣ ≜ ρ. (7)

Consider a situation with a positive error, for which sgn(θ(j)⊺x) = −1 but y = +1. In such case,

θ(j+1)⊺θ̃ = (θ(j) + x)⊺θ̃ = θ(j)
⊺
θ̃ + x⊺θ̃︸︷︷︸

⩾ρ

⩾ θ(j)
⊺
θ̃ + ρ. (8)

Consider now a situation with a negative error, for which sgn(θ(j)⊺x) = +1 but y = −1. In such
case, we have again

θ(j+1)⊺θ̃ = (θ(j) − x)⊺θ̃ = θ(j)
⊺
θ̃ − x⊺θ̃︸︷︷︸

⩽−ρ

⩾ θ(j)
⊺
θ̃ + ρ. (9)

We can conclude that if we have made m PLA updates after j steps, it must hold that

θ(j+1)⊺θ̃ ⩾ θ(0)
⊺
θ̃ +mρ. (10)

Define now τ ≜ maxi ∥xi∥2. Consider a situation with positive error and note that

∥θ(j+1)∥22 = ∥θ(j) + x∥22 = ∥θ(j)∥22 + ∥x∥22 + 2 x⊺θ(j)︸ ︷︷ ︸
⩽0

⩽ ∥θ(j)∥22 + τ2 (11)

Similarly, for a situation with a negative error, we have

∥θ(j+1)∥22 = ∥θ(j) − x∥22 = ∥θ(j)∥22 + ∥x∥22 − 2 x⊺θ(j)︸ ︷︷ ︸
⩾0

⩽ ∥θ(j)∥22 + τ2 (12)

3

ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

We can therefore conclude that if we have made m error after j steps, it must hold that

∥θ(j+1)∥22 ⩽ ∥θ(0)∥22 +mτ2. (13)

We finally tie in (10) and (13) using Cauchy-Schwarz inequality.

θ(0)
⊺
θ̃ +mρ ⩽ θ(j+1)⊺θ̃ ⩽ ∥θ(j+1)∥2∥θ̃∥2 ⩽ ∥θ̃∥2

√
∥θ(0)∥22 +mτ2. (14)

Since we assumed (without losing much generality) that θ(0) = 0, we obtain that the numberm of
errors must satisfy

m ⩽ ∥θ̃∥22τ2

ρ2
. (15)

In other words, if after going sufficiently many points in the dataset, if we have made more than
∥θ̃∥2

2τ
2

ρ2 updates because of errors, we must have found a separating hyperplane. ■

The result ofTheorem 2.1 is quite remarkable because the dimension of the data does not appear
and the order in which the data points are processed has no incidence. Nevertheless, the convergence
can be very slow, especially if the ratio τ

ρ in (15) is very small. Note that we may not know τ
ρ ahead

of time, so that we cannot not guarantee how long it will take for the algorithm to find a separating
hyperplane.

3 Maximum margin hyperplane

Although the PLA is guaranteed to find a separating hyperplane in linearly separable data, not all
separating hyperplanes are equally useful. Consider the situation illustrated in Fig. 3, which shows
two valid separating hyperplanes for linearly separable dataset in R2. Intuitively, H1 is likely to be
sensitive to statistical variations in the data set because it is too close to some of the points in the
class. In contrast, H2 has some margin that is likely to make the prediction more robust.

H1

H2

Figure 3: All separating hyperplanes are equal but some are more equal than others.

Definition 3.1. The margin of a separating hyperplaneH ≜ {x : w⊺x+ b = 0} for a linearly separable
dataset {(xi, yi)}Ni=1 is

ρ(w, b) ≜ min
i∈J1,NK

|w⊺xi + b|
∥w∥2

(16)

The maximum margin hyperplane is then defined as H∗ ≜ {x : w∗⊺x+ b∗ = 0} such that

(w∗, b∗) = argmax
w,b

ρ(w, b). (17)

4

ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

Intuitively, the maximum margin hyperplane leads to a more robust separation of the classes
and therefore benefits from a better generalization. For linearly separable datasets with Y = {±1},
it is also convenient to write the separating hyperplane in canonical form.

Definition 3.2. The canonical form (w, b) of a separating hyperplane is such that

∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1 and ∃i∗ ∈ J1, NK s.t. yi∗(w⊺xi∗ + b) = 1. (18)

The canonical form can always be obtained by normalizing w and b by mini |w⊺xi + b|. By
rewriting all hyperplanes in canonical form, the maximum margin hyperplane can be characterized
as follows.

(w∗, b∗) = argmax
w,b

ρ(w, b) (19)

= argmax
w,b

1

∥w∥2
s.t. ∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1 (20)

= argmin
w,b

1

2
∥w∥22 s.t. ∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1 (21)

Note that in (20), we have dropped the condition ∃i∗ ∈ J1, NK s.t. yi∗(w⊺xi∗ + b) = 1. This
can be justified a posteriori by the fact that the maximum margin hyperplane must satisfy the con-
straint with equality. We will discuss this again later after reviewing a bit of constrained convex
optimization. The vectors xi such that yi(w⊺xi + b) = 1 are called support vectors and will reap-
pear when we discuss support vector machines. In (21), we have used the fact that maximizing

1
∥w∥2

is equivalent to minimizing 1
2∥w∥

2
2. The choice of the quadratic function is motivated by its

nice analytical properties that make the numerical optimization more stable. The good news is that
the optimization in (21) is a constrained quadratic program that we know how to solve extremely
efficiently.

4 Non-linearly separable data

The previous discussion hinges on the fact that the dataset is linearly separable. In reality, this is
unlikely to happen in practice because their might be noise in the labels or because the exists no true
separation between classes. In such case we need to relax the notion of maximummargin hyperplane
and consider soft margins. Specifically, if a dataset is not linearly separable, then it is impossible to
guarantee that ∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1. The solution is therefore to introduce positive slack
variables ξ = {ξi}Ni=1 and only seek to enforce

∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1− ξi. (22)

When ξi > 1, we effectively allow the classification to make an error. Of course, we would like to
ensure that this does not happen much and rather than fixing the ξ ahead of time, we make them
part of the optimization.

Definition 4.1. For a chosen C > 0, the optimal soft-margin hyperplane is

argmin
w,b,ξ

1

2
∥w∥22 +

C

N

N∑
i=1

ξi s.t. ∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1− ξi and ξi ⩾ 0. (23)

5

ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

Note that
∑N

i=1 ξi ⩾ 0 can be viewed as the cost incurred when misclassifying a datapoint.
The bigger ξi, the larger the cost. The parameter C allows the user to tradeoff the minimization of
∥w∥2, which controls the margin, and the minimization of ξ, which controls the penalty incurred
when misclassifying. As illustrated in Fig. 4, a small value of C makes the cost of misclassification
negligible and the optimization will favor a hyperplane that separates the data well and ignores a
few misclassified outliers. In contrast, a large value of C will result in a hyperplane that avoids
misclassifications as much as possible.

C ≪ 1

C ≫ 1

Figure 4: Soft-margin hyperplanes

Regardless of the soft-margin constraints, there exist datasets that are never remotely close to
linearly separable. Fig. 5 provides an illustration in R2. The data cannot be properly classified with
a linear classifier because it is intrinsically not linear in the features x1 and x2. Note, however, that
the data could be separated in principle using the rule x2

1 + x2
2 ≷ 1.

x1

x2

0

10

Figure 5: Example of non-linearly separable data

Note that the rule x2
1 + x2

2 ≷ 1 is a linear classifier on the nonlinear features x2
1 and x2

2. This
suggests that we could transform the feature vector before using a linear classifier using the map
Φ : Rd → Rp such that

Φ :

 x1

...
xd

 →

ϕ1(x)
...
...

ϕp(x)

 . (24)

This may seem like a good idea, but note that this is not really telling us how to create the non-linear
features and how many to generated. Note that if p ≫ n, there is a risk of overfitting the training
set by using linear features that separate the training data well but have no chance of generalizing
well.

6

ECE 6254 - Summer 2020 - Lecture 6 v1.0 - revised June 8, 2020

Remark 4.2. We could have chosen to apply a nonlinear transform after classifying, e.g., Φ(w⊺x + b).
However the choice of using w⊺Φ(x)+ b allows us to reuse the linear classifier seen earlier and will allow
us to introduce the concept of kernels later on.

5 To go further

More details on soft margin optimization can be found in [1, Section 12.2].

References

[1] T. Hastie, R. Tibshirani, and J. H. Friedman,The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, ser. Springer series in statistics. Springer, 2009.

7

	A bit of geometry
	The Perceptron Learnign Algorithm
	Maximum margin hyperplane
	Non-linearly separable data
	To go further

