Matthieu R Bloch
A constrained optimization problem is convex if \(f\) is convex, the \(g_i\)’s are convex, and the \(h_j\)’s are affine
The Lagrange dual function is \[\calL_D(\boldsymbol{\lambda},\boldsymbol{\mu})=\min_{\bfx}\calL(\bfx,\boldsymbol{\lambda},\boldsymbol{\mu})\]
The dual optimization problem is \[\max_{\boldsymbol{\lambda}\geq \boldsymbol{0},\boldsymbol{\mu}} \calL(\boldsymbol{\lambda},\boldsymbol{\mu}) = \max_{\boldsymbol{\lambda}\geq \boldsymbol{0},\boldsymbol{\mu}}\min_{\bfx}\calL(\bfx,\boldsymbol{\lambda},\boldsymbol{\mu})\].
The primal function is \[\calL_P(\bfx)\eqdef \max_{\boldsymbol{\lambda}\geq\boldsymbol{0},\boldsymbol{\mu}}\calL(\bfx,\boldsymbol{\lambda},\boldsymbol{\mu})\]
The primal optimization problem is \[\min_{\bfx}\calL_P(\bfx) = \min_{\bfx}\max_{\boldsymbol{\lambda}\geq\boldsymbol{0},\boldsymbol{\mu}}\calL(\bfx,\boldsymbol{\lambda},\boldsymbol{\mu})\]
The (Lagrangian) dual function is concave.
Let \(\calF\) denote the set of feasible values of the original problem. Then \(\min_\bfx \calL_P(\bfx) = \min_{\bfx\in\calF}f(\bfx)\).
\[d^*\eqdef \max_{\boldsymbol{\lambda}\geq \boldsymbol{0},\boldsymbol{\mu}}\min_{\bfx}\calL(\bfx,\boldsymbol{\lambda},\boldsymbol{\mu}) \leq p^*\eqdef \min_{\bfx}\max_{\boldsymbol{\lambda}\geq \boldsymbol{0},\boldsymbol{\mu}}\calL(\bfx,\boldsymbol{\lambda},\boldsymbol{\mu})\]
We can solve the dual (concave maximization problem) and obtain a lower bound for the primal
The gap \(p^*-d^*\geq 0\) is called the duality gap
Strong duality is the situation in which \(p^*-d^*=0\)
Question: how are the solutions of the primal and dual problems related?
Consider \(\bfx, \boldsymbol{\lambda}, \boldsymbol{\mu}\)
Stationarity: \[0 = \nabla f(\bfx)+\sum_{i=1}^m\lambda_i\nabla g_i(\bfx)+\sum_{j=1}^p \mu_j\nabla h_j(\bfx)\]
Primal feasibility: \[\forall i\in\intseq{1}{m}\quad g_i(\bfx)\leq 0\qquad \forall j\in\intseq{1}{p}\quad h_j(\bfx)=0\]
Dual feasibility: \[\forall i\in\intseq{1}{m}\quad \lambda_i\geq 0\]
Complementary slackness: \[\forall i\in\intseq{1}{m}\quad \lambda_ig_i(\bfx)= 0\]