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Introduction to Kernel methods

Matthieu R. Bloch

1 The kernel trick

Consider the maximum margin hyperplane with non linear transform Φ : Rd → Rp:

argmin
w,b

1

2
∥w∥22 s.t. ∀i yi(w⊺Φ(xi) + b) ⩾ 1 (1)

We will show later that the optimalw is a linear combination of the data pointsw =
∑N

i=1 αiΦ(xi),
so that

∥w∥22 = w⊺w =

N∑
i=1

N∑
j=1

αiαjΦ(xi)⊺Φ(xj) =
N∑
i=1

N∑
j=1

αiαj⟨Φ(xi),Φ(xj)⟩ (2)

and

w⊺Φ(xj) =
N∑
i=1

αiΦ(xi)⊺Φ(xj) =
N∑
i=1

αi⟨Φ(xi),Φ(xj)⟩. (3)

Note that the only quantities that really matter in this optimization problem are the inner products
⟨Φ(xi),Φ(xj)⟩. Irrespective of the codomain of Φ, there are only N2 inner products. Perhaps
surprisingly, the dimension of Φ(x) is hidden in the inner products and does not explicitly appear,
all other operations are in the original feature space Rd. The nonlinear features may not even be
computed explicitly in ⟨Φ(xi),Φ(xj)⟩.

The “kernel trick” consists in exploiting these observations to replace the inner products of
transformed feature vectors ⟨Φ(xi),Φ(xj)⟩ by a kernel k(xi, xj), without ever having to specify Φ.
The main challenge in kernelizing is to understand what is needed to define a valid kernel. Based
on our previous discussion, the kernel should define inner products ⟨Φ(xi),Φ(xj)⟩, defined in a
Hilbert space H such that Φ : Rd → H.

Definition 1.1 (Inner product kernel). An inner product kernel is a mapping k : Rd × Rd → R for
which there exists a Hilbert space H and a mapping Φ : Rd → H such that

∀u, v ∈ Rd k(u, v) = ⟨Φ(u),Φ(v)⟩H

Example 1.2 (Quadratic kernel). Quadratic kernel k(u, v) = (u⊺v)2

What makes kernel useful is an alternative and much more tangible characterization, which we
now establish.

Definition 1.3 (Positive semidefinite kernel). A function k : Rd ×Rd → R is a positive semidefinite
kernel if

1. k is symmetric, i.e., k(u, v) = k(v, u)
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2. for all {xi}Ni=1, the Gram matrix K is positive semidefinite, i.e.,

x⊺Kx ⩾ 0 with K = [Ki,j ] and Ki,j ≜ k(xi, xj)

Positive semidefinite kernels are quite common (you might have encountered them in other
contexts), and turn out to be all that we need to characterize inner product kernels.

Theorem 1.4. A function k : Rd × Rd → R is an inner product kernel if and only if k is a positive
semidefinite kernel.

Proof. Comning soon ■

Useful examples of kernels include:

• Homogeneous polynomial kernel: k(u, v) = (u⊺v)m with m ∈ N∗

• Inhomogenous polynomial kernel: k(u, v) = (u⊺v+ c)m with c > 0, m ∈ N∗

• Radial basis function (RBF) kernel: k(u, v) = exp
(
−∥u−v∥2

2σ2

)
with σ2 > 0

The main lingering question is how to effectively kernelize the maximum margin optimization
problem. This requires us to review some notions of optimization, and in particular the notion of
duality.

2 Introduction to Lagrangian duality

We will consider the following canonical form of constrained optimization problem

min
x∈Rd

f(x) such that

{
gi(x) ⩽ 0 ∀i ∈ J1,mK
hj(x) = 0 ∀j ∈ J1, pK . (4)

Unlike unconstrained optimization problems that you may be familiar with, it is not enough to set
the derivative of f equal to zero (assuming it exists) to find an optimizer, even if the function is
convex. This happens because the constraints that we add restrict the domain over which we are
looking for a minimizer. We will repeatedly use the following terminology.

• f is called the objective function;

• gi(x) is called an inequality constraint;

• hj(x) is called an equality constraint;

• if x satisfies all the constraints, we say that it is feasible.

Remark 2.1. There is no loss of generality in considering problems as in (4). In fact, any inequality and
equality can be put in the form given in (4), andmaximization problems can be turned into minimization
problems by considering −f in place of f .

Definition 2.2. A constrained optimization problem is *convex* if f is convex, the gi’s are convex, and
the hj ’s are affine
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Rather than dealing with the constraints separately from the objective function, it is convenient
to group everything together; specifically, we turn the constrained optimization into an uncon-
strained one using the Lagrangian

L(x,λ,µ) ≜ f(x) +
m∑
i=1

λigi(x) +
p∑

j=1

µjhj(x) with λ ⩾ 0, (5)

where we have defined the dual variables (also called Lagrange multipliers) λ ≜ [λ1, · · · , λm]⊺ and
µ ≜ [µ1, · · · , µp]

⊺.

2.1 Primal and dual problems
Based on the Lagrangian in (5), one can define two problems of interest.

Definition 2.3. The Lagrange dual function is

LD(λ,µ) = min
x

L(x,λ,µ). (6)

The dual optimization problem is

max
λ⩾0,µ

LD(λ,µ) = max
λ⩾0,µ

min
x

L(x,λ,µ). (7)

Definition 2.4. The primal function is

LP (x) ≜ max
λ⩾0,µ

L(x,λ,µ) (8)

The primal optimization problem is

min
x

LP (x) = min
x

max
λ⩾0,µ

L(x,λ,µ) (9)

We will see shortly how these two problems relate to our original problem in (4), but we can
already make a few observations.

Proposition 2.5. The dual function LD(λ,µ) is concave in λ,µ.

Proof. For a fixed x, it follows from the definition in (5) that L(x,λ,µ) is affine in λ and µ, and
therefore concave. The dual function is then the pointwise minimum of concave functions, and
therefore concave as well (check it!). ■

Proposition 2.5 should be intriguing because we have not said anything about f . In particular,
f need not be convex or well-behaved in anyway. Consequently, the dual optimization problem is
a concave maximization that is always well-behaved.

Proposition 2.6. Denote by F the set of feasible values of x, i.e.,

F ≜ {x ∈ Rd : ∀i ∈ J1,mK gi(x) ⩽ 0 and ∀j ∈ J1, pKhj(x) = 0}. (10)

The minimum of the primal problem is the minimum of the original problem, i.e.,

min
x

LP (x) = min
x∈F

f(x). (11)

3



ECE 6254 - Summer 2020 - Lecture 7 v1.0 - revised June 8, 2020

Proof. We first note that if a point x is not feasible then there exists i∗ ∈ J1,mK such that gi∗(x) >
0 or j∗ ∈ J1, pK such that hj∗ ̸= 0. In the former case, note that for λi∗ ⩾ 0, the quantity
λi∗gi∗(x) ⩾ 0 can be made arbitrarily large. In the latter case, we can always find µj∗ such that
sgn(µj∗) = sgn(hj∗(x)) and µj∗hj∗(x) ⩾ 0 can be made arbitrarily large. In either case, we obtain

LP (x) = +∞ when x is not feasible. (12)

Next, note that

min
x∈F

f(x)
(a)
= min

x∈F
L(x,0,0)

(b)

⩽ min
x∈F

max
λ⩾0,µ

L(x,λ,µ) (c)
= min

x∈F
LP (x)

(d)
= min

x
LP (x). (13)

Note that (a) follows by definition of the Lagrangian; (b) follows because we are maximizing over
λ and µ; (c) follows by definition of the primal function; (d) follows by (12).

In addition, if we let x∗ ≜ argminx∈F f(x), note that x∗ is feasible so that gi(x∗) ⩽ 0 and
hj(x∗) = 0. Consequently, for λ ⩾ 0, we have

L(x∗,λ,µ) = f(x∗) +

m∑
i=1

λi gi(x∗)︸ ︷︷ ︸
⩽0

+

p∑
i=1

µi hj(x∗)︸ ︷︷ ︸
=0

⩽ f(x∗), (14)

with equality if λ = 0, and for any µ, which we can choose equal to 0. Therefore,

min
x

LP (x) ⩽ LP (x∗) = L(x∗,0,0) = f(x∗), (15)

so that the inequality in (b) of (13) is an equality. ■

Proposition 2.6 shows why the primal function is called primal. It is essentially equivalent to
the original problem but is formulated as an unconstrained optimization problem.

2.2 Weak duality
One of the key results that justifies the introduction of the primal and dual problems is the so called
weak duality.

Theorem 2.7 (Weak duality).

d∗ ≜ max
λ⩾0,µ

min
x

L(x,λ,µ) ⩽ p∗ ≜ min
x

max
λ⩾0,µ

L(x,λ,µ). (16)

Proof. Let x ∈ F be feasible, and let λ ⩾ 0, µ be fixed. By definition, gi(x) ⩽ 0 and hj(x) = 0 so
that

L(x,λ,µ) = f(x) +
m∑
i=1

λi︸︷︷︸
⩾0

gi(x)︸︷︷︸
⩽0

+

P∑
j=1

µj hj(x)︸ ︷︷ ︸
=0

⩽ f(x). (17)

Consequently,

LD(λ,µ) = min
x

L(x,λ,µ)
(a)

⩽ min
x∈F

L(x,λ,µ)
(b)

⩽ min
x∈F

f(x)
(c)
= min

x
LP (x), (18)
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where (a) follows because restricting the set of points can only increase the minimum; (b) follows
because of (17); and (c) follows by from the equality of the primal solution with the original problem
solution. Since λ ⩾ 0 and µ are arbitrary, we obtain

max
λ⩾0,µ

LD(λ,µ) ⩽ min
x

LP (x). (19)

■

Weak duality tells us that we can solve the dual problem , which is always a concavemaximization
problem and obtain a lower bound for the primal. This result is useful by itself in many situations.
There are situations where knowing a lower bound on the minimum (e.g., a minimum revenue) is
perhaps all we care about. Perhaps more importantly, the dual problem allows us to check whether
a proposed primal solution is valid or not. In general, without additional assumptions, there is no
reason to have d∗ = p∗ and the gap p∗ − d∗ ⩾ 0 is called the duality gap.

The situation in which p∗ − d∗ = 0 is called strong duality and makes the dual formulation
particularly interesting. There are too many interesting applications of strong duality to list, and I
will just mention a few.

• Certificates. The optimizers of the dual problem (λ∗,µ∗) can serve as a certificate to check if a
proposed minimizer x∗ is indeed correct. In fact, if strong duality holds, we can merely check
that LD(λ∗,µ∗) = LP (x∗) and be guaranteed that we have the optimal solution. Note that
this does not require us to know how the solutions were obtained. Another application of
certificates is to decide when to stop an iterative algorithm when the duality gap is zero. The
smaller the duality gap at a given iteration, the closer we are to the optimal solution.

• Primal-dual methods. There exist many algorithms that iteratively solve primal and dual prob-
lems to converge to the optimal solution. When running such an iterative algorithm, we can
compute the duality gap at each iteration for the specific values of x, λ and µ and measure
how much progress the algorithm is making.

2.3 Karush-Kuhn Tucker conditions
The Karush-Kuhn Tucker (KKT) conditions can be though of the extension of the well known
stationary condition ( dfdx (x) = 0) used in non-constrained optimization to identify the extremum of
a function.

Definition 2.8 (KKT conditions). Consider a function f : Rd → R, assumed to be differentiable in
its domain. There are four KKT conditions.

1. Stationarity

0 = ∇f(x) +
m∑
i=1

λi∇gi(x) +
p∑

j=1

µj∇hj(x) (20)

2. Primal optimality

∀i ∈ J1,mK gi(x) ⩽ 0 ∀j ∈ J1, pK hj(x) = 0 (21)

3. Dual optimality

∀i ∈ J1,mK λi ⩾ 0 (22)
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4. Complementary slackness

∀i ∈ J1,mK λigi(x) = 0 (23)

Proposition 2.9. If x∗ and (λ∗,µ∗) are primal and dual solutions with zero duality gap, then x∗ and
(λ∗,µ∗) satisfy the KKT conditions.

Proof. Coming soon. ■

Proposition 2.10. If the original problem is convex and x̃ and (λ̃, µ̃) satisfy the KKT conditions, then
x̃ is primal optimal, (λ̃, µ̃) is dual optimal, and the duality gap is zero.

Proof. Coming soon. ■

Consequently, if a constrained optimization problem is differentiable and convex, the KKT con-
ditions are necessary and sufficient for primal/dual optimality (with zero duality gap); in addition,
we can use the KKT conditions to find a solution to our optimization problem. Conveniently, the
optimal soft-margin hyperplane problem falls in this category.

3 Kernelization of optimal soft-margin hyperplane classifier

The optimal soft-margin hyperplane is the solution of the following

argmin
w,b,ξ

1

2
∥w∥22 +

C

N

N∑
i=1

ξi s.t. ∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1− ξi and ξi ⩾ 0 (24)

This optimization problem is differentiable and convex, so that the KKT conditions are necessary
and sufficient and the duality gap is zero. We will kernelize the (equivalent) dual problem.

The Lagrangian is

L(w, b, ξ,λ,µ) ≜ 1

2
w⊺w+

C

N

N∑
i=1

ξi +

N∑
i=1

λi(1− ξi − yi(w⊺xi + b))−
N∑
i=1

µiξi (25)

with λ ⩾ 0,µ ⩾ 0. The Lagrange dual function is

LD(λ,µ) = min
w,b,ξ

L(w, b, ξ,λ,µ) (26)

and the dual problem is

max
λ⩾0,µ⩾0

LD(λ,µ). (27)

This dual problem is not particularly more convenient to work with. The key insight is that we can
use the KKT conditions to simplify LD(λ,µ).

Lemma 3.1 (Simplification of dual function). The dual function is

LD(λ,µ) = −1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊺
i xj +

N∑
i=1

λi (28)
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Proof. Follows from KKT conditions. ■

Lemma 3.2. The dual optimization problem function is

max
λ,µ

−1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊺
i xj +

N∑
i=1

λi s .t.

{
∀i ∈ J1, NK ∑N

i=1 λiyi = 0

∀i ∈ J1, NK 0 ⩽ λi ⩽ C
N

(29)

Proof. Coming soon. ■

We can very efficiently solve for λ∗ using numerical algorithms. It remains to show how one
can relate the solution (λ∗,µ∗) of the dual problem to the solution (w∗, b∗) of the primal problem.

Lemma 3.3.

w∗ =

N∑
i=1

λ∗
i yixi and b∗ = yi − w∗⊺xi

for some i ∈ J1, NK such that 0 < λ∗
i < C

N

Proof. Coming soon. ■

Note that the only data points that matter are those for which λ∗
i ̸= 0. By completementary

slackness they are the ones for which yi(w∗⊺xi+ b) = 1− ξ∗i . These points are called support vectors
and are located on or inside the margin. In practice, the number of support vectors is often ≪ N ,
so that the optimal classifier can be described with a small number of parameters.

Now that we have described the optimal soft margin classifier in terms of the optimization
problem in Lemma 3.2, all we have to do to kernelize is replace the inner products x⊺j xi by kernel
values k(xj , xi). Given an inner product kernel k(·, ·), the support vector machine classifier is

hSVM(x) ≜ sgn

 ∑
i∈J1,NKλ

∗
i yik(xi, x) + b∗

 (30)

where λ∗ is the solution of

max
λ,µ

−1

2

N∑
i=1

N∑
j=1

λiλjyiyjk(xi, xj) +
N∑
i=1

λi s .t.

{
∀i ∈ J1, NK ∑N

i=1 λiyi = 0

∀i ∈ J1, NK 0 ⩽ λi ⩽ C
N

(31)

and

b∗ = yi −
N∑
j=1

λ∗
jyjk(xi, xj) (32)

for some i ∈ J1, NK such that 0 < λ∗
i < C

N .
We will see other examples of kernelization later in the course.
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