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Regression and regularization

Matthieu R. Bloch

We now turn our attention to the problem of regression, which corresponds to the supervised
learning setting when Y = R. Said differently, we will not attempt to learn a discrete label anymore
as in classification but a continuously changing one. Classification is a special case of regression, but
the discrete nature of labels lends itself to specific insights and analysis, which is why we studied it
separately. Looking at regression will require the introduction of new concepts and will allow us to
obtain new insights into the learning problem.

1 From classification to regression

As a refresher, the supervised learning problem we are interested in consists in using a labeled dataset
{(xi, yi)}Ni=1, xi ∈ Rd to predict the labels of unseen data. In classification, yi ∈ Y ⊂ R with
|Y| ≜ K < ∞ while in regresssion yi ∈ Y = R.

Our regression model is that the relation between label and data is of the form y = f(x) + n
with f ∈ H, where H is a class of functions (polynomials, splines, kernels, etc.), and n is some
random noise.

Definition 1.1 (Linear regression). Linear regression corresponds to the situation in which H is the set
of affine functions

f(x) ≜ β⊺x+ β0 with β ≜ [β1, · · · , βd]
⊺ (1)

Definition 1.2 (Least square regression). Least square regression corresponds to the situation in which
the loss function is sum of square errors

SSE(β, β0) ≜
N∑
i=1

(yi − β⊺xi − β0)
2 (2)

Linear least square regression is a widely used technique in applied mathematics, which can be
traced back to the work of Legendre inNouvelles méthodes pour la détermination des orbites des comètes
(1805) and Gauss in Theoria Motus (1809, but claim to discovery in 1795).

We will make a change of notation to simplify our analysis moving forward. We set

θ ≜


β0

β1

...
βd

 ∈ Rd+1 y ≜


y1
y2
...
yN

 ∈ RN X ≜


1 −x⊺1−
1 −x⊺2−
...

...
1 −x⊺N−

 ∈ RN×(d+1), (3)

which allows us to rewrite the sum of square error as

SSE(θ) ≜ ‖y− Xθ‖22. (4)

One of the reason that makes linear least square regression so popular is the existence of a closed
form analytical solution.
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Lemma 1.3 (Linear least square solution). If X⊺X is non singular the minimizer of the SSE is

θ̂ = (X⊺X)−1X⊺y (5)

Proof. See annotated slides. ■

The existence of this solution is a bit misleading because computing θ̂ can be extremely numer-
ically unstable. The matrix (X⊺X)−1 could be ill-conditioned.

As for classification, linear methods have their limit, and one can create a non-linear estimator
using a non-linear feature map Φ : Rd → Rℓ : x 7→ Φ(x). The regression model becomes

y = β⊺Φ(x) + β0 with β ∈ Rℓ. (6)

Example 1.4. To obtain a least square estimate of cubic polynomial f with d = 1, one can use the non
linear map

Φ : R → R4 : x 7→


1
x
x2

x3

 . (7)

2 Overfitting and regularization

Overfitting is the problem that happens when fitting the data well no longer ensures that the out-of-
sample error is small, i.e., the underlying model learned generalized poorly. This happens no only
when there are too many degrees of freedom in model so that one “learns the noise ” but also when
the hypothesis set contains simpler functions than the target function f but the number of sample
points N is too small. In general, overfitting occurs as the number of features d begins to approach the
number of observations N .

To illustrate this, consider the following example in data is generated as y = x2 + n with
x ∈ [−1; 1], where n ∼ N (0, σ = 0.1). We perform regression with polynomial of degree d.
Fig. 1a shows the true underlying model and five samples obtained independently and uniformly at
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(a) True model and sample points.
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(b) Regression fit with d = 4.

Figure 1: Illustration of overfitting

random. Fig. 1 shows the resulting predictor obtained by fitting the data to a polynomial of degree
d = 4. Since we only have five points, there exists a degree four polynomial that predicts exactly the
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value of all five training point. This is an example where our regression is effectively learning the
noise in the model. To fully appreciate the consequence of overfitting, Fig. 2a shows the regression
results for twenty randomly sampled sets of five points.
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(a) Many regressions with d = 4 on five randomly
sampled points.
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(b)Many regressions with d = 1 on five randomly
sampled points.

Figure 2: Regression with too few datapoints

As you can see, there is a huge variance in the resulting predictor, suggesting that we have an
unstable prediction that does not generalize well. Perhaps surprisingly, one observes a similar vari-
ance when trying to fig the data to a polynomial of degree d = 1. In the latter situation, the degree
of the polynomial is one less than the true model so that the model cannot fit the noise; however,
the variance stems from the fact that there are few sample points. As shown in Fig. 3a and Fig. 3b,
overfitting disappears once we have enough data points.
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(a) Many regressions with d = 4 on fifty ran-
domly sampled points.
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(b) Many regressions with d = 1 on fifty ran-
domly sampled points.

Figure 3: Regression with enough data points

In practice though, we are often interested in limiting overfitting even when the number of data
points is small. The key solution is a technique called regularization.
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3 Tikhonov regularization

The key idea behind regularization is to introduce a penalty term to “regularize” the vector θ:

θ = argmin
θ

‖y− Xθ‖22 + ‖Γθ‖22 (8)

where Γ ∈ R(d+1)×(d+1)

Lemma 3.1 (Tikhonov regularization solution). The minimizer of the least-square problem with
Tikhonov regularization is

θ̂ = (X⊺X+ Γ⊺Γ)−1X⊺y (9)

Proof. See annotated slides. ■

For the special case Γ =
√
λI for some λ > 0, we obtain

θ̂ = (X⊺X+ λI)−1X⊺y (10)

This simple change has many benefits, including improving numerical stability when computing θ̂
since X⊺X+ λI is better conditioned than X⊺X.

Ridge regression is a slight variant of the above that does not penalize β0 and corresponds to

Γ =


0 0 · · · 0

0
√
λ · · · 0

...
. . . . . .

...
0 · · · · · ·

√
λ

 (11)

To appreciate the effect of regularization. Fig. 4 shows the resulting regressions with λ = 1 in the
same situation as earlier. Notice how the variance of the regression is substantially reduced.
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(a) Many ridge regressions with d = 4 on five
randomly sampled points.
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(b) Many ridge regressions with d = 1 on five
randomly sampled points.

Figure 4: Ridge regression

It is also useful to understand Tikhonov regularization as a constrained optimization problem.
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Lemma 3.2 (Tikhonov regularization solution revisited). The minimizer of the least-square problem
with Tikhonov regularization is the solution of

argmin
θ

‖y− Xθ‖22 such that ‖Γθ‖
2
2 ⩽ τ (12)

for some τ > 0

Proof. See annotated slides. ■

Fig. 5 illustrates the effect of Tikhonov regularization inR2 assuming that Γ = I. The Tikhonov
solution is shrinked towards the zero vector to satisfy the constraint. Intuitively, the regularized
solution corresponds to the point where the level set of ‖y − Xθ‖2 first intersects the feasible region
‖θ‖22 = τ .

θ1

θ2

‖θ‖
2

2 ! τ

θ̂LS

θ̂reg

Figure 5: Illustration of Tikhonov regularization

4 Shrinkage estimators

The Tikhonov regularization previously introduced is a shrinkage estimator, in the sense that its
shrinks a naive estimate towards some guess. As illustrated in Fig. 5, one can think of the regular-
ization as shrinking the least-square estimate θLS towards zero.

Shrinkage estimators are arguably a bit strange, especially because it may not be clear priori how
biasing an estimate towards a guess would bring any benefit. The intuition you should have is that
the shrinkage often leads to a lower variance of the estimator, perhaps at the expense of an increase
in the bias. The example below illustrates this idea in a simple situation.

Example 4.1 (Estimating the variance). Let {xi}Ni=1 be iid samples drawn according to unknown
distribution with variance σ2. Consider two estimators of the variance

σ̂2
biased ≜

1

N

N∑
i=1

(xi − µ̂)2 σ̂2
unbiased ≜

1

N − 1

N∑
i=1

(xi − µ̂)2 (13)

As the names suggest, it is not hard to show that

E
(
σ̂2
biased

)
=

N − 1

N
σ2 E

(
σ̂2
unbiased

)
= σ2 (14)

Perhaps surprisingly one can also show that the biased estimate has a lower variance than the unbiased
one.
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Tykhonov regularization is not the only regularizer that one can use, and statisticians have de-
veloped many alternative regularizers, such as

• Akaike information criterion (AIC): penalty that is an increasing function of the number of
estimated parameters;

• Bayesian information criterion (BIC): also an increasing function of the number of estimated
parameters.

One regularize that has become increasingly popular is the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) estimator

θ̂ = argmin
θ

‖y− Xθ‖22 + λ‖θ‖1. (15)

With LASSO, coordinates are shrunk by the same amount. The main benefit of LASSO is that
it promotes sparsity, i.e., solutions tend to have a small number of non-zero components. The
problem is also much more computationally tractable than directly enforcing sparsity through a
‖θ‖0 constraint. In constrained form, the LASSO estimation problem becomes

θ = argmin
θ

‖y− Xθ‖22 such that ‖θ‖1 ⩽ τ, (16)

for which there is no closed form solution but which is very powerful whenn � d (susceptible to
overfitting) or X has non trivial null space and there is no obvious way to find the best solution. The
intuition behind LASSO is illustrated in Fig. 6, the norm 1 ball {x : ‖x‖1 ⩽ τ} is more “pointy”
than the norm 2 ball, which increase the likelihood of the regularization to yield an extreme point
with few non-zero components.
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Figure 6: Illustration of LASSO regularization.

5 General approach to regression

Consider now a general approach to regression, in which we define our estimate as

θ̂ = argmin
θ

L(θ,X, y) + λr(θ) (17)

where L : Rd+1 × RN×(d+1) × RN → R is a loss function and r : Rd+1 → R is a regularizer.
Intuitively, the role of the loss function it to ensure data fidelity while the role of the regularizer is
to limit the complexity of the solution.

Among the many possible choices of loss functions, we highlight three that are fairly popular:

6



ECE 6254 - Summer 2020 - Lecture 14 v1.0 - revised July 21, 2020

• the mean absolute error LAE(r) ≜ |r|;

• the Huber loss LH(r) =

{
1
2r

2 if |r| ⩽ c

c |r| − c2

2 else
;

• the ϵ-insensitive loss Lϵ(r) =

{
0 if |r| ⩽ ϵ

|r| − ϵ else
.

These losses are illustrated in Fig. 7.

r

Loss

LAE(r)

cc

LH(r)

ϵ−ϵ

Lϵ(r)

Figure 7: Illustration of loss functions

Let us now investigate one specific example called the regularized robust regression, which com-
bines the ϵ-insensitive loss with an ℓ2 regularizer as

β̂, β̂0 = argmin
β,β0

N∑
i=1

Lϵ(yi − (β⊺xi + β0)) +
λ

2
‖β‖22 (18)

This ϵ-insensitive loss does not incur a penalty as long as prediction is within a margin of ϵ of the true
value. This is suspiciously similar to what the problem we were solving when looking at Support
Vector Machines (SVMs), and one can therefore wonder if we could kernelize the regression prob-
lem. The answer turns out to be affirmative as shown by the characterization of the dual problem
of (18).

Lemma 5.1 (Dual of regularized robust regression). Robust regression is the solution of

argmin
α,α∗

N∑
i=1

((ϵ− yi)αi + (ϵ+ yi)α
∗
i ) +

1

2

∑
i,j

(αi − α∗
i )(αj − α∗

j )x
⊺
j xi (19)

such that

0 ⩽ α∗
i , αi ⩽

1

λ
,

N∑
i=1

(α∗
i − αi) = 0, α∗

iαi = 0 (20)

The solution is then ŷ =
∑N

i=1(αi − α∗
i )x

⊺
i x− β0.

7
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Proof. See for yourselves! ■

The previous kernelization of the ϵ-robust regression through the formulation of the dual prob-
lem is a bit misleading because the kernelization is in general not straightforward. We highlight
next two examples for which the kernelization can be worked out.

6 Kernelized LASSO

The LASSO regression is given by

θ̂ = argmin
θ

‖y− Xθ‖22 + ‖θ‖1,

which is not easy to kernerlize directly. Instead, we modify the problem and and enforce the kernel-
ization by looking for a specific θ of the form θ̃ ≜

∑
i αixi for {αi}di=1 and solve the optimization

problem
α̂ = argmin

α

‖y− Xθ̃‖22 + ‖α‖1

This can be kernelized but promotes sparsity in α instead of θ, which is not quite the original
LASSO problem.

7 Kernel ridge regression

One example we can explore in much more details is kernel ridge regression. The first step towards
kernelization consists in reformulating the objective of ridge regression as follows.

Lemma 7.1. The ridge regression problem is equivalent to

β̂, β̂0 = argmin
β,β0

N∑
i=1

‖yi − ȳ − β⊺(xi − x̄)‖22 + λ‖β‖22 (21)

with x̄ = 1
N

∑
i xi and ȳ = 1

N

∑
i yi. The prediction for an unseen x is then computed as

ŷ = ȳ + β̂
⊺
(x− x̄) (22)

Proof. Recall that the original ridge regression problem is

β̂, β̂0 = argmin
β,β0

1

N

N∑
i=1

‖yi − β⊺xi − β0‖22 + λ‖β‖22︸ ︷︷ ︸
≜L

(23)

Applying the stationarity condition of the Karush-Kuhn Tucker (KKT) conditions to this problem,
we must have

∂L
∂β0

= 0 ⇔ − 2

N

N∑
i=1

(yi − β⊺xi − β0) = 0 (24)

8
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so that

β0 ≜ 1

N

N∑
i=1

yi − β⊺
(

1

N

N∑
i=1

xi

)
≜ ȳ − β⊺x̄. (25)

Substituting this optimal value of β0 in (25) into the optimization problem (23), we obtain (21).
The evaluation y = β⊺x+ β0 with (25) yields (22). ■

Note that the optimization problem in Lemma 7.1 is a ridge regression problem for a centered
data set, in which the value yi are replaced by yi− ȳ and in which the feature vectors xi are replaced
by xi − x̄. Using the known analytical solution for ridge regression developed in a previous lecture,
we immediately obtain

β̂ = (A⊺A+ λI)−1A⊺ỹ

where

A ≜


(x1 − x̄)⊺

(x2 − x̄)⊺
...

(xN − x̄)⊺

 ỹ ≜


y1 − ȳ
y2 − ȳ

...
yN − ȳ

 .

Unfortunately, one cannot directly kernelize this solution because the matrix A⊺A does not contain
inner products between feature vectors. One can, however, rewrite the solution using theWoodbury
matrix inversion identity given below.

Lemma 7.2 (Woodbury matrix inversion identity).

(P+QRS)−1 = P−1 − P−1Q(R−1 + SP−1Q)−1SP−1

The main benefit of this identity is to switch the order in which the matrix are multiplied. In
our context, we use this to introduce inner products between feature vector in the expression of the
solution for β.

Lemma 7.3.

β̂ =
1

λ
(A⊺ − A⊺(λI+ K)−1K)ỹ with K ≜ AA⊺ = [(xi − x̄)⊺(xj − x̄)]i,j

and

ŷ = ȳ+
1

λ
ỹ⊺(I− K(λI+ K)−1I)k(x) with k(x) =

 (x1 − x̄)⊺(x− x̄)
...

(xN − x̄)⊺(x− x̄)


Proof. We use Lemma 7.2 with the choice of matrices

P ≜ λI Q ≜ A⊺ R = I S = A, (26)

for which we obtain

(λI+ A⊺A)−1 =
1

λ
I− 1

λ
IA⊺(I+ A

1

λ
A⊺)−1A

1

λ
I (27)

=
1

λ

[
I− A⊺(λI+ AA⊺)−1A

]
. (28)

9
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Consequently,

(λI+ A⊺A)−1A⊺ỹ =
1

λ

(
A⊺ − A⊺(λI+ AA⊺)−1AA⊺) ỹ (29)

=
1

λ
A⊺ (I− (λI+ K)−1K

)
ỹ, (30)

and the evaluation ŷ − ȳ = β⊺(x− x̄) from (22) yields

ŷ − ȳ = ỹ⊺
(
I− K(λI+ K)−1

)
A(x− x̄), (31)

where we have used the fact that K⊺ = K. The result follows from the definition of k(x). ■

Notice that the evaluation of ŷ in Lemma 7.3 only involves inner products between centered
feature vectors in K and k(x). One kernelize the expression by substituting every inner product
(xj − x̄)⊺(x− x̄) with k(xj − x̄, x− x̄) for some inner product kernel k(·, ·).

Remark 7.4. For many kernels, the map Φ(x) already contains a constant component so that we often
omit β0. The expression of kernel ridge regression without offset then simplifies to

ŷ = y⊺(λI+ K)−1k(x)

where
k(x) =

[
k(x1, x) · · · k(xN , x)

]⊺ Ki,j = k(xi, xj).

Example 7.5 (Gaussian kernel). A widely used kernel is the Gaussian kernel defined as

k(u, v) ≜ exp

(
−
‖u− v‖22

2σ2

)
. (32)

The parameter σ is called the width of the kernel and can be thought of as controlling how smooth
we want the learned function to be. To visualize this, note that y⊺(λI + K)−1 is merely a row vector
α⊺ = [α1, · · · , αN ], so that ŷ =

∑N
i=1 αik(xi, x). One can interpret this as writing our approximation

ŷ as a weighted sum of bell-shaped curves placed around each data point as shown in Fig. 8.

x

ŷ

x0x1x2x3 x4

Figure 8: Illustration of Gaussian kernel ridge regression.
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8 Regularization and classification

Since classification is a special case of regression, the viewpoint of loss function and regularization
also applies to classification. As a simple application, the logistic regression minθ −ℓ(θ) can be reg-
ularized as minθ −ℓ(θ)+λ‖θ‖22 to make the Hessian matrix well conditioned in a Newton method.
This is also very useful when the number of observations is small and the data not separable.

Most importantly, the loss function and regularization framework offers a new way to think
about classification. In fact, when trying to separate two classes with a hyperplane, we would ideally
like to solve the optimization problem

argmin
w,b

1

N

N∑
i=1

1{yi(w⊺xi + b) < 0} ,

which assigns a penalty of one to every misclassified point and zero otherwise. Unfortunately, this
is a hard problem to solve not only analytically but also numerically because the indicator function
1{·} is not well behaved. Viewing the indicator function as a {0, 1}-loss, we now know that we
can use other loss functions; in particular, we can choose a loss function ϕ(t) ⩾ 1{t < 0} and a
regularization to solve a relaxed but well-behaved modified optimization

argmin
w,b

1

N

N∑
i=1

ϕ (yi(w⊺xi + b)) + λ‖w‖22.

There aremany possible choices, but a popular choice is the hinge loss ϕ(t) ≜ max(0, 1−t) ≜ (1−t)+
illustrated in Fig 9.

t

ϕ(t)

1{t ⩾ 0}

(1− t)+

Figure 9: Hinge loss

The optimization problem with the hinge loss then becomes

argmin
w,b

1

N

N∑
i=1

(1− yi(w⊺xi + b))+ + λ‖w‖22.

We can introduce slack variables ξi = 1− yi(w⊺xi + b) to rewrite the problem equivalently as

argmin
w,b,ξ⩾0

1

N

N∑
i=1

ξi + λ‖w‖22 such that ∀i ∈ J1, NK yi(w⊺xi + b) ⩾ 1− ξi, (33)

which is exactly the soft-margin hyperplane seen in previous lectures.
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