Matthieu Bloch
Thursday September 29, 2022
The exponentially correlated process is a wide sense stationary process defined by an autocorrelation function of the form \[ \dotp{y_i}{y_j} \eqdef a^{\abs{i-j}} \qquad\forall i,j\qquad \textsf{for some } a\in(0;1) \]
Consider the linear stochastic differential equations \(\vecy_{i+1}-a \vecy_i=\vecu_i\) for \(i\geq 0\), \(a\in\bbR\)
\(\forall i\geq j\) we have \(\dotp{\vecu_i}{\vecy_j}=0\). For \(i\geq 0\), if \(\Pi_i\eqdef \norm{\vecy_i}^2\) then \(\Pi_{i+1}=a^2\Pi_i+\matQ_i\)
In general the process is not stationary
If \(\matQ_i=\matQ\), \(\Pi_0 = \frac{\matQ}{1-a^2}\) with \(\abs{a}<1\), the process is stationary.
Innovations can be computed regardless of stationarity
The innovation of the process defined by the stochastic differential equation above is \(\vece_i=\vecu_i\) for \(i\geq 0\)
How general is such a approach?
The autoregressive model can be represented as a simple order 1 recursion of the form \[ \vecx_{i+1} = \matF_i\vecx_i + \matG_i\vecu_i\qquad y_i =\matH_i\vecx_i \]
The autoregressive moving-average model can be represented as an order 1 recursion
The standard state space model is of the form \[ \vecx_{i+1} = \matF_i\vecx_i + \matG_i\vecu_i\qquad \vecy_i = \matH_i \vecx_i + \vecv_i \] with known matrices \(\set{\matF_i,\matG_i,\matH_i}\) and \[ \dotp{\left[\begin{array}{c}\vecx_0\\\vecu_i\\\vecv_i\end{array}\right]}{\left[\begin{array}{c}\vecx_0\\\vecu_j\\\vecv_j\\1\end{array}\right]} \eqdef \left[\begin{array}{cccc}\Pi_0&0&0&0\\0&\matQ_i\delta_{ij}&\matS_i\delta_{ij}&0\\0&\matS_i^T\delta_{ij}&\matR_i\delta_{ij}&0\end{array}\right] \]
Let \(\dotp{\vecx_i}{\vecx_i}=\Pi_i\). Then \[ \forall i\geq 0\qquad \Pi_{i+1} = \matF_i\Pi_i\matF_i^T + \matG_i\matQ_i\matG_i^T \] Let \(\Phi(i,j)\eqdef \prod_{\ell=i-1}^j\matF_\ell\) for \(i>j\) and \(\Phi(i,i)=\matI\). Then \[ \dotp{\vecx_i}{\vecx_j} = \begin{cases}\Phi(i,j)\Pi_j\text{ for }i\geq j\\\Pi_i\Phi(j,i)^T\text{ for }i\leq j\end{cases} \] \[ \dotp{\vecy_i}{\vecy_j} = \begin{cases}\matH_i\Phi(i,j+1)\matN_j\text{ for }i> j\text{ with }\matN_i=\matF_i\Pi_i\matH_i^T+\matG_i\matS_i\\ \matR_i+\matH_i\Pi_i\matH_i^T\text{ for }i= j\\ \matN_i^T\Phi(j,i+1)^T\matH)j^T\text{ for }i< j\end{cases} \]