Matthieu Bloch
Thursday, November 10, 2022
In general, \(p(y_{1:T}|\vecx^{(i)})\) easier to evaluate (measurement model)
Use Bayes' rule \[ p(\vecx^{(i)}|\vecy_{1:T}) = \frac{p(\vecy_{1:T}|\vecx^{(i)})p(\vecx^{(i)})}{\int p\vec(y_{1:T}|\vecx)p(\vecx)d\vecx} \] and note the denominator is still hard to compute!
Importance sampling to the rescue \[ \E{g(\vecx)|\vecy_{1:T}} \approx \sum_{i=1}^n \tilde{w}^{(i)} g(\vecx^{(i)})\textsf{ where } \tilde{w}^{(i)} \eqdef \frac{\frac{p(\vecy_{1:T}|\vecx^{(i)})p(\vecx^{(i)})}{\pi(\vecx^{(i)}|\vecy_{1:T})}}{\sum_{j=1}^n\frac{p(\vecy_{1:T}|\vecx_j)p(\vecx_j)}{\pi(\vecx_j|\vecy_{1:T})}} \]
Sequential importance sampling is a variation that can be used for probabilistic state-space models with \[ \vecx_k\sim p(\vecx_k|\vecx_{k-1})\qquad \vecy_k\sim p(\vecy_k|\vecx_k) \]
Idea
Gaussian proceses have emerged has a powerful tool to model unknown functions and learn them from samples
A Gaussian process is a colelction fo random variables, any finite number of which have a joint Gaussian distribution
A Gaussian process is completely specific by a mean function \(m(\vecx)\) and a covariance function \(k(\vecx,\vecx')\) of a real-valued process \(f(\vecx)\) such that \[ m(\vecx)\eqdef \E{f(\vecx)}\qquad k(\vecx,\vecx') = \E{(f(\vecx-m(\vecx)))(f(\vecx')-m(\vecx'))} \]
Possible to generalize to vector-valued functions (more on this later), often assume \(m(\vecx)=0\)