Matthieu Bloch
Thursday, December 1, 2022
Measurement model
\[ Z_k = \left[\bigcup_{\xi\in X_{k}}\Theta_{k}(\xi)\right]\bigcup K_k \]
Ideal Bayes filter to track multiple-target posterior density \[ p_{k|k-1}(X_k|Z_{1:k-1}) = \int f_{k|k-1}(X_k|X)p_{k-1}(X|Z_{1:k-1})\mu_s(X) \] \[ p_k(X_k|Z_{1:k}) = \frac{g_k(Z_k|X_k)p_{k|k-1}(X_k|Z_{1:k-1})}{\int g_k(Z_k|X)p_{k|k-1}(X_k|Z_{1:k-1})\mu_s(X)} \]
Linear Gaussian models for dynamics and measurment
Survival and detection probabilities state independent \[ p_{S,k}(x) = p_{S,k}\quad p_{D,k}(x) = p_{D,k} \]
Gaussian mixtures for birth and spawn intensities \[ \gamma_k(x)\eqdef \sum_{i=1}^{J_{\gamma,k}}w_{\gamma,k}^{(i)}\calN(x;m_{\gamma,k}^{(i)},P_{\gamma,k}^{(i)}) \] \[ \beta_{k|k-1}(x|\xi)\eqdef \sum_{i=1}^{J_{\beta,k}}w_{\beta,k}^{(j)}\calN(x;F_{\beta,k-1}^{(j)}\xi+d_{\beta,k-1}^{(j)},Q_{\beta,k-1}^{(j)}) \]
Key insight: Gaussian mixtures are preserved