Matthieu Bloch
Tuesday September 06, 2022
Announcements
Last time
Today's plan
Stochastic least squares
Questions?
The least mean square estimator \(h^*\) is \[ h^* = \argmin_{h}\E{(\vecx-h(\vecy))(\vecx-h(\vecy))^T} \] in the sense that for all \(h\) the matrix \(\matP(h)\eqdef(\vecx-h(\vecy))(\vecx-h(\vecy))^T\) satisfies \[ \forall \veca\in \bbR^n\quad \veca^T \matP(h)\veca\geq\veca^T \matP(h^*)\veca \]
The least mean square estimate of \(\vecx\) given \(\vecy\) is \(\hat{\vecx}=\E{\vecx|\vecy}\)
Multidimensional Gaussian random variables are essential to many engineering problems
For \(\vecx\in\bbR^n\) and \(\vecy\in\bbR^m\), a real centered multivariate Gaussian distribution is defined by a probability density function of the form \[ p(\vecx,\vecy)\eqdef \frac{1}{\pi^{n+m}\det \matR}\exp\left(-\left[\begin{array}{cc}(\vecx-\vecmu_\vecx)^T&(\vecy-\vecmu_\vecy)^T\end{array}\right]\matR^{-1}\left[\begin{array}{c}(\vecx-\vecmu_\vecx)\\(\vecy-\vecmu_\vecy)\end{array}\right]\right) \] where \(\vecmu_\vecx\eqdef \E{\vecx}\), \(\vecmu_\vecy\eqdef \E{\vecy}\) and \[ \matR \eqdef \left[\begin{array}{cc}\matR_\vecx&\matR_{\vecx\vecy}\\\matR_{\vecy\vecx}&\matR_{\vecy}\end{array}\right]\quad \textsf{ with }\quad \begin{array}{lll}\matR_\vecx=\E{(\vecx-\vecmu_\vecx)(\vecx-\vecmu_\vecx)^T}\\ \matR_{\vecx\vecy}=\E{(\vecx-\vecmu_\vecx)(\vecy-\vecmu_\vecy)^T}=\matR_{\vecy\vecx}^T\\ \matR_\vecy=\E{(\vecy-\vecmu_\vecy)(\vecy-\vecmu_\vecy)^T}\end{array} \]
Only need two parameters to specify two parameters: a mean vector and a covariance matrix
Note: Make your life easier and center the random vectors
Assume \(\vecx\in\bbR^n\) and \(\vecy\bbR^m\) follow a multivariate Gaussian distribution with non singular covariance matrix
The least mean square estimate of \(\vecx\) given \(\vecy\) is \[ \E{\vecx|\vecy} = \matR_{\vecx\vecy}\matR_{\vecy}^{-1}\vecy \]
The LMSE in linear!
The LMSE for multivariate Gaussian only requires knowlege of mean vectors and covariance matrix
Note: what happens when the covariance matrix is singular? (Homework)
Assume \(\vecx\in\bbR^n\) is to be estimated from \(p\) observations \(\set{\vecy_i}_{i=1}^p\) and \(\vecy_i\in\bbR^m\). Define \[ \vecy^T = \left[\begin{array}{ccc}\vecy_1&\cdots&\vecy_p\end{array}\right]\in\bbR^{mp} \]
The linear least mean square estimate (LLMSE) of \(\vecx\) given \(\set{\vecy_i}_{i=1}^p\) is given by any solution of the normal equation \[ \matK_0\matR_\vecy = \matR_{\vecx\vecy} \]
The corresponding error covariance matrix is \(P(\matK_0)=\matR_\vecx-\matK_0\matR_{\vecy\vecx}\)
We have performed sensor fusion: we have optimally combined observations from multiple sensors
What happens if random vectors are not centered?