Matthieu Bloch
Thursday September 15, 2022
Then \(\matP^{-1}\vecx = \matP_1^{-1}\hat{\vecx}_1+\matP_2^{-1}\hat{\vecx}_2\) with \(\matP^{-1} = \matP_1^{-1}+\matP_2^{-1}-\matR_\vecx^{-1}\)
Consider the deterministic least square optimization \[ \min_{\vecx} (\vecx-\vecx_0)^T\Pi_0^{-1}(\vecx-\vecx_0) + \norm[W]{\vecy-\matH\vecx}^2 \]
Consider the linear stochastic least square optimization for the linear model \(\vecy=\matH\vecx+\vecv\)
A stochastic process is a collection of random variables \(\set{x_i}_{i\geq 0}\) characterized by the joint pdfs \(p_{X_{i_1}\cdots X_{i_k}}\) for all \(k\geq 1\) and all \(\set{i_j}_{j=1}^k\).
Smoothing: estimate \(x_i\) from \(\set{y_j}_{j=0}^m\), \(m>i\) (using past, present and future observations) as \[ \hat{x}_{i|m} \eqdef \sum_{j=0}^{m} k_{i,j}y_j \]
Causal filtering: estimate \(x_i\) from \(\set{y_j}_{j=0}^{i}\) (using past, and present observations) as \[ \hat{x}_{i|i} \eqdef \sum_{j=0}^{i} k_{i,j}y_j \]
Prediction: estimate \(x_{i+\ell}\) from \(\set{y_j}_{j=0}^{i}\), \(\ell>1\) (using past observations) as \[ \hat{x}_{i+\ell|i} \eqdef \sum_{j=0}^{i} k_{i,j}y_j \]
In all cases we want the estimation to be optimal (minimize error covariance matrix)
Let's put what we've learned to work: geometry!
Smoothing reduces to solving the normal equations and for \(\matR_y\succ 0\) \[ \hat{\vecx}_{s} = \matR_{\vecx\vecy}\matR_{\vecy}^{-1}\vecy \] where \[ \hat{\vecx}_{s}\eqdef\left[\begin{array}{c}\hat{x}_{0|m}\\\vdots\\\hat{x}_{m|m}\end{array}\right]\quad \matR_{\vecy}\eqdef\left[\matR_y(i,j)\right]\quad \matR_{\vecx\vecy}\eqdef\left[\matR_{xy}(i,j)\right] \]
For \(\matR_\vecy\succ 0\) decomposed as \(\matR_\vecy=\matL\matD\matL^T\) (\(\matL\) lower triangular) \[ \hat{\vecx}_{f} = \mathcal{L}\left[\matR_{\vecx\vecy}\matL^T\matD^{-1}\right]\matL^{-1}\vecy \] where \[ \hat{\vecx}_{f}\eqdef\left[\begin{array}{c}\hat{x}_{0|0}\\\hat{x}_{1|1}\\\vdots\\\hat{x}_{m|m}\end{array}\right]\quad \matR_{\vecy}\eqdef\left[\matR_y(i,j)\right]\quad \matR_{\vecx\vecy}\eqdef\left[\matR_{xy}(i,j)\right] \] and \(\mathcal{L}[\cdot]\) is the operator that makes a matrix lower triangular.