Prof. Matthieu Bloch
Thursday August 24, 2023
Let \(X\in\calX\) and \(Y\in\calY\)
\[ P_{Y|X}(y|x) = P_{X|Y}(x|y)\frac{P_{Y}(y)}{P_X(x)} \]
Two random variables \(X\in\calX\) and \(Y\in\calY\) are independent if and only if \(P_{XY}=P_XP_Y\)
For \(f:\mathbb{R}\to\mathbb{R}\), \(f(X)\) is the random variable such that \(P_{f(X)}(y)\eqdef \sum_{x:f(x)=y}P_X(x)\) \[ \E{f(X)}\eqdef \sum_{x}f(x)P_X(x) \]
Let \(X\) be a random variable. The \(m\) -th moment of \(X\) is \(\E{X^m}\)
The variance is the second centered moment \(\text{Var}{X}\eqdef \E{(X-\E{X})^2}=\E{X^2}-\E{X}^2\)
Let \(X\) be a random variable and \(\calE\subset\mathbb{R}\). Then \[\E{\indic{X\in\calE}}=\P{X\in\calE}\]
For random variables \(X,Y\) and a function \(f:\mathbb{R}^2\to\mathbb{R}\) \[ \E[XY]{f(X,Y)} = \E[Y]{\E[X|Y]{f(X,Y)|Y}} \]
Let \(P,Q\in\Delta(\calX)\). We say that \(P\) is absolutely continuous wrt \(Q\), denoted by \(P\ll Q\), if \(\text{supp}{P}\subseteq\text{supp}{Q}\).
Let \(X, Y, Z\) be real-valued random variables with joint PMF \(P_{XYZ}\). Then \(X\), \(Y\), \(Z\) form a Markov chain in that order, denoted \(X - Y - Z\), if \(X\) and \(Z\) are conditionally independent given \(Y\), i.e., \[ \forall (x,y,z)\in\calX\times\calY\times\calZ \textsf{ we have }P_{XZY}(x,y,z)= P_{Z|Y}(z|y) P_{Y|X}(y|x) P_X(x) \]
Let \(X\) be a non-negative real-valued random variable. Then for all \(t>0\)
\[\begin{align} \P{X\geq t}\leq \frac{\E{X}}{t}.\label{eq:MarkovInequality} \end{align}\]
\[\begin{equation} \mathbb{P}[X \geq t] = \mathbb{E}[\indic{X \geq t}] = \mathbb{E}[{\indic{X \geq t}} \indic{\phi(X) \geq \phi(t)}] \leq \mathbb{P}[\phi(X) \geq \phi(t)], \end{equation}\]
Let \(X \in \mathbb{R}\). Then,
\[\begin{align} \mathbb{P}[|X - \E{X}| \geq t] \leq \frac{\text{Var}X}{t^2}. \end{align}\]
Consider independent random variables \(X_i\) with \(\mathbb{E}[X_i] = 0\) and \(X_i \in [a_i,b_i]\). Let \(Y = \sum_{i=1}^n X_i\). Then
\[\begin{align} \mathbb{P}\left[ \sum_{i=1}^n X_i \geq t \right]\leq \exp \left( - \frac{2 t^2}{\sum_{i=1}^n (a_i-b_i)^2} \right) \end{align}\]
A function \(f:\intseq{a}{b} \longmapsto \mathbb{R}\) is convex if \(\forall \lambda \in \intseq{0}{1}\) \(f(\lambda a + (1-\lambda)b ) \leq \lambda f(a) + (1 - \lambda) f(b)\). A function \(f\) is strictly convex if the inequality above is strict. A function \(f\) is (strictly) concave if \(-f\) is (strictly) convex.
Let \(X\) be a real-valued random variable defined on some interval \([a,b]\) and with PDF \(p_X\). Let \(f:[a,b]\rightarrow \mathbb{R}\) be a real valued function that is convex in \([a,b]\). Then,
\[\begin{align*} f(\E{X})\leq \E{f(X)}. \end{align*}\]
For any strictly convex function, equality holds if and only if \(X\) is a constant. The results also holds more generally for continuous random variables.
Let \(\{a_i\}_{i=1}^n\in\bbR_{+}^n\) and \(\{b_i\}_{i=1}^n\in\bbR_{+}^n\). Then,
\[\begin{align*} \sum_{i=1}^n a_i\ln \frac{a_i}{b_i} \geq \left(\sum_{i=1}^n a_i\right)\ln\frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}. \end{align*}\]
The only functions that satisfies the axioms are \(H(X) = -C\sum_xP_X(x)\log P_X(x)\) for some \(C>0\).
Let \(X\in\calX\) be a discrete random variable with \(\card{\calX}<\infty\). The Shannon entropy of \(X\) is defined as
\[\begin{align} \mathbb{H}(X) \eqdef \E[X]{-\ln P_X(X)} = - \sum_{x \in {\calX}} P_X(x) \ln P_X(x), \end{align}\]
with the convention that \(0\ln 0 = 0\).
Let \(X\in\calX\) be a discrete random variable. Then \(\mathbb{H}(X) \geq 0\) with equality iff \(X\) is a constant, i.e., there exists \(x^*\in\calX\) such that \(\P{X=x^*}=1\).
Let \(X \in {\calX}\) be a discrete random variable. Then \(\mathbb{X}\leq \ln \card{\calX}\) with equality if and only if \(X\) is uniform over \({\calX}\), i.e., \(\forall x \in {\calX}, P_X(x) = \frac{1}{\card{\calX}}\).
The joint entropy of two discrete random variables \(X\in\calX\) and \(Y\in\calY\) with joint PMF \(P_{XY}\) is
\[\begin{align*} \mathbb{H}(X,Y) \eqdef \mathbb{E}_{XY}(-\log_2 P_{XY}(X,Y)) = - \sum_{x \in {\calX}} \sum_{y \in \mathcal{Y}}P_{XY}(x, y) \log_2 P_{XY}(x, y). \end{align*}\]
Furthermore, the conditional entropy \(Y\) given \(X\) is
\[\begin{align*} \mathbb{H}(Y|X) \eqdef \mathbb{E}_{XY}(-\log_2 P_{Y|X}(Y|X)) = - \sum_{x \in {\calX}} \sum_{y \in \mathcal{Y}} P_{XY}(x,y) \log_2 P_{Y|X}(y|x). \end{align*}\]
Let \(X, Y\) be discrete random variables with joint PMF \(p_{XY}\). Then \(\mathbb{H}(Y|X) \geq 0\) with equality if and only if \(Y\) is a function of \(X\).