ECE 6605 - Information Theory

Prof. Matthieu Bloch

Wednesday, September 13, 2023

Announcements

  • Assignment 2
    • To be posted on Canvas/Gradescope today
    • Due on Tuesday September 26, 2023 (12 days)
  • Last time
    • Renyi entropy
    • Smoothing
    • Typicality
  • Today
    • Typicality
    • Source coding

Asymptotic Equipartition Property

  • Motivation what can we say about long sequences of i.i.d. random variables?

Let \(\set{X_i}_{i=1}^n\) be i.i.d. random variables \(\sim P_X\). Then, \(\frac{1}{n}\sum_{i=1}^nX_i\) converges in probability to \(\E{X}\). Specifically,

\[\begin{align*} \forall\epsilon>0\qquad \lim_{n\to \infty}\P{\abs{\frac{1}{n}\sum_{i=1}^nX_i-\E{X}}>\epsilon}=0. \end{align*}\]

Let \(\set{X_i}_{i=1}^n\) be i.i.d. random variables \(\sim P_X\). Then,

\[\begin{align*} \frac{-1}{n}\log P_{X}^{\otimes n}(X_1,\cdots,X_n)\mathop{\longrightarrow}_{n\to\infty}\bbH(X)\textsf{ in probability.} \end{align*}\]

Typical set

The typical set \(\calA_\epsilon^n(P_X)\) is

\[\begin{align*} \calA_\epsilon^n(P_X) \eqdef \set{x^n\in\calX^n:2^{-n(\bbH(X)+\epsilon)}\leq P_X^{\otimes n}(x^n)\leq2^{-n(\bbH(X)-\epsilon)}} \end{align*}\]

  1. For \(x^n\in\calA_\epsilon^n(P_X)\)

    \[\begin{align*} \bbH(X)-\epsilon \leq -\frac{1}{n}\log P_X^{\otimes n}(x^n) \leq \bbH(X)+\epsilon \end{align*}\]

  2. \(\P{\calA_\epsilon^n(P_X)}\to 1\) as \(n\to\infty\)

  3. \(\card{\calA_\epsilon^n(P_X)} \leq 2^{n(\bbH(X)+\epsilon)}\)

  4. \(\card{\calA_\epsilon^n(P_X)} \geq (1-\epsilon)2^{n(\bbH(X)-\epsilon)}\) for \(n\) large enough

Application: data compression

Fixed-length source coding

Image
Fixed-length source coding model

A fixed-lengh \((n,M_n)\) code for a discrete memoryless source \(p_X\) consists of:

  1. A encoding function \(f_n:\calX^n\to\set{1;M_n}\)
  2. A decoding function \(g_n:\set{1;M_n}\to \calX^n\)
  • The performance of an \((n,M_n)\) code is measured in terms of
    1. The rate of the code \(R\eqdef \frac{\log_2 M_n}{n}\) (bits/source symbol)

    2. The average probability of error

      \[\begin{align*} P_e^{(n)}(\calC) \eqdef \P{\widehat{X}^n\neq X^n} \eqdef \sum_{x^n\in\calX^n}P_X^{\otimes n}(x^n)\indic{g_n(f_n(x^n))\neq x^n}. \end{align*}\]

Fixed length source coding

  • Question 1: for a fixed \(n\in\bbN\), what is the minimum \(R\) required to achieve \(P_e^{(n)}\leq \epsilon\)?

  • Question 2: as \(n\to\infty\), what is the minimum \(R\) that ensures that \(\lim_{n\to \infty} P_e^{(n)}=0\) \[ C_{\textsf{source}}\eqdef \inf\left\{R: \exists {(f_n,g_n)}_{n\geq 1} with \lim_{n\to\infty}\frac{\log M_n}{n}\leq R \text{ and } \lim_{n\to\infty}P_e^{(n)}=0\right\} \]

For a discrete memoryless source \(p_X\), \(C_{\textsf{source}} = \bbH(X)\)

  • This is an asymptotic results as \(n\to\infty\) without any consideration of the complexity of decoding
  • One can get rates as close to the entropy as one wishes as long as \(n\) is large enough (achievability)
  • One cannot compress below the entropy (converse)

Converse

Consider a sequence of fixed length \((n,M_n)\) source codes \(\set{(f_n,g_n)}_{n\geq1}\) such that \[ \lim_{n\to\infty}\frac{\log M_n}{n}\leq R \text{ and } \lim_{n\to\infty}P_e^{(n)}=0 \] Then \(R\geq \bbH(X)\).

Achievability

  • The achievability follows using a technique called random binning. Consider a source \(P_U\).
  • First define a set \[ \calB_\gamma\eqdef\left\{u\in\calU:\log\frac{1}{P_{U}(u)}\leq\gamma\right\}. \]
  • Encoding function \(f:\calU\to \set{1;M}\) created by assigning an index uniformly at random in \(\set{1;M}\) to each \(u\in\calU\)
  • Decoding function \(g:\intseq{1}{M}:m\mapsto u^*\), where \(u^*=u\) if \(u\) is the unique sequence such that \((u,v)\in\calB_\gamma\) and \(f(u)=w\); otherwise, a random \(u\) is declared

On average (over the random binning to create \(F\)), \[ \E[C]{P_e} \leq \P[P_{U}]{U\notin \calB_\gamma} + \frac{2^{\gamma}}{M}. \]