NON-ORTHOGONAL BASES

DR. MATTHIEU R BLOCH

Wednesday, September 29, 2021

LOGISTICS

Assignment 4 Assigned later this week

- Will include a programming components
- Due October 11, 2021

2/7

WHAT'S ON THE AGENDA FOR TODAY?

Last time: Non-Orthobases

- Isomorphism of separable Hilbert space \mathcal{H} to ℓ_2
- Non-orthobases may compromise stability!

Today: More on non-orthobases

- Dual basis
- Infinite dimension

Monday October 04, 2021: Least-square regression

Reading: Romberg, lecture notes 7

RECAP: NON-ORTHOGONAL BASES IN FINITE DIMENSION

Proposition. Let $\{v_i\}_{i=1}^n$ be a linearly independent set in a Hilbert space \mathcal{H} of dimension n. Then, for any $x\in\mathcal{H},x=\sum_{i=1}^nlpha_iv_i$ for some $oldsymbollpha\in\mathbb{R}^n$. In addition, there exists A,B>0 such that

$$A \, \| \, oldsymbol lpha \, \| \,_2^2 \leq \, \| \, x \, \| \,_{\mathcal{H}}^2 \leq B \, \| \, oldsymbol lpha \, \| \,_2^2$$

Inequality is tight on both sides

For orthobases, A = B = 1

Interpretation:

• The values of A and B govern the *stability* of the representation

Examples

NON-ORTHOGONAL BASES IN FINITE DIMENSION: DUAL BASIS

Recall from orthobases:

- perfectly stable representation A = B = 1
- Efficient computation of representations: $lpha_i = \langle x, v_i
 angle$

Proposition. For any $x \in \mathcal{H}$ with basis $\{v_i\}_{i=1}^n$ we have

$$x = \sum_{i=1}^n lpha_i v_i \hspace{0.5cm} ext{with} \hspace{0.5cm} oldsymbol{lpha} = \mathbf{G}^{-1} egin{bmatrix} \langle x, v_1
angle \ \langle x, v_2
angle \ dots \ dot$$

There also exists a basis $\{ ilde{v}_i\}_{i=1^n}$ such that $lpha_i=\langle x, ilde{v}_i
angle$

NON-ORTHOGONAL BASES IN INFINITE DIMENSION

Definition.

 $\{v_i\}_{i=1}^{\infty}$ is a **Riesz basis** for Hilbert space \mathcal{H} if $\operatorname{cl}(\operatorname{span}(\{v_i\}_{i=1}^{\infty})) = \mathcal{H}$ and there exists A, B > 0 such that

$$\left\|A\sum_{i=1}^\infty lpha_i^2 \le \left\|\sum_{i=1}^n lpha_i v_i
ight\|_{\mathcal{H}}^2 \le B\sum_{i=1}^\infty lpha_i^2
ight\}$$

uniformly for all sequences $\{\alpha_i\}_{i>1}$ with $\sum_{i>1} \alpha_i^2 < \infty$.

In infinite dimension, the existence of A, B > 0 is **not** automatic.

Examples

NON-ORTHOGONAL BASES IN FINITE DIMENSION: DUAL BASIS

Computing expansion on Riesz basis not as simple in infinite dimension: Gram matrix is "infinite" The Grammiam is a linear operator

$$\mathcal{G}: \ell_2(\mathbb{Z}) o \ell_2(\mathbb{Z}): \mathbf{x} \mapsto \mathbf{y} ext{ with } [\mathcal{G}(\mathbf{x})]_n riangleq y_n = \sum_{\ell = -\infty^\circ}$$

Fact: there exists another linear operator $\mathcal{H}: \ell_2(\mathbb{Z}) \to \ell_2(\mathbb{Z})$ such that

 $\mathcal{H}(\mathcal{G}(\mathbf{x})) = \mathbf{x}$

We can replicate what we did in finite dimension!

 $\langle v_\ell, v_n
angle x_\ell$