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LOGISTICSLOGISTICS
Assignment 4 assigned tonight

Includes a programming component

Due October 13, 2021 (so� deadline, hard deadline on October 15)

2 / 13



WHAT’S ON THE AGENDA FOR TODAY?WHAT’S ON THE AGENDA FOR TODAY?
Last time: Non-Orthobases

Dual basis

Today

Wrap up non-orthobases in infinite dimension
Least-square regression

Reading: Romberg, lecture notes 7/8
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NON-ORTHOGONAL BASES IN INFINITE DIMENSIONNON-ORTHOGONAL BASES IN INFINITE DIMENSION
Definition.

 is a Riesz basis for Hilbert space  if  and there exists  such that

uniformly for all sequences  with .

In infinite dimension, the existence of  is not automatic.

Examples

4 / 13



NON-ORTHOGONAL BASES IN FINITE DIMENSION: DUAL BASISNON-ORTHOGONAL BASES IN FINITE DIMENSION: DUAL BASIS
Computing expansion on Riesz basis not as simple in infinite dimension: Gram matrix is “infinite”

The Grammiam is a linear operator

Fact: there exists another linear operator  such that

We can replicate what we did in finite dimension!
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REGRESSIONREGRESSION
A fundamental problem in unsupervised machine learning can be cast as follows

O�en , but sometimes  is a weirder object (think tRNA string)
if  with , the problem is called classification
if , the problem is called regression

We need to introduce several ingredients to make the question well defined

1. We need a class  to which  should belong
2. We need a loss function  to measure the quality of our approximation

We can then formulate the question as

We will focus quite a bit on the square loss , called least-square regression
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LEAST SQUARE LINEAR REGRESSIONLEAST SQUARE LINEAR REGRESSION
A classical choice of  is the set of continuous linear functions.

 is linear iff

We will see that every continuous linear function on  is actually an inner product, i.e.,

Canonical form I

Stack  as row vectors into a matrix , stack  as elements of column vector 
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LEAST SQUARE AFFINE REGRESSIONLEAST SQUARE AFFINE REGRESSION
Canonical form II

Allow for affine functions (not just linear)

Add a 1 to every 
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NONLINEAR REGRESSION USING A BASISNONLINEAR REGRESSION USING A BASIS
Let  be an $$d-dimensional subspace of a vector space with basis 

We model 

The problem becomes

We are recovering a nonlinear function of a continuous variable

This is the exact same computational framework as linear regression.
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SOLVING THE LEAST-SQUARES PROBLEMSOLVING THE LEAST-SQUARES PROBLEM
Proposition. Any solution  to the problem  must satisfy

This system is called normal equations

Facts: for any matrix 

 and  are orthogonal complements

We can say a lot more about the normal equations

1. There is always a solution
2. If , there is a unique solution
3. if  there are infinitely many non-trivial solution
4. if , there exists a solution  for which 

In machine learning, there are o�en infinitely many solutions
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MINIMUM NORM 2 SOLUTIONSMINIMUM NORM 2 SOLUTIONS
One reasonable to choose a solution among infintely many is the minimum energy principle

We will see the solution is always unique

For now, assume that , so that the problem becomes

Proposition. The solution is 
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REGULARIZATIONREGULARIZATION
Recall the problem

There are infinitely many solution if  is non trivial
The space of solution is unbounded!
Even if , the system can be poorly conditioned

Regularization with  consists in solving

This problem always has a unique solution
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RIDGE REGRESSIONRIDGE REGRESSION
We can adapt the regularization approach to the situation of a Hilbert space 

We are penalizing the norm of the entire function 

Using a basis for the space  , and constructing  as earlier, we obtain

with  the Gram matrix for the basis.

If  is invertible, we find the solution as

and we can reconstruct the function as



If  is well conditioned, the resulting function is not too sensitive to the choice of the basis
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