REGRESSION

DR. MATTHIEU R BLOCH

Wednesday October 06, 2021

LOGISTICS

Assignment 4 assigned Tuesday, October 5, 2021

- Includes a (small) programming component
- Due October 14, 2021 (soft deadline, hard deadline on October 16)

Last time: Least-square regression

Today

- Solving linear least-square regression
- Extension to infinite dimension

Reading: Romberg, lecture notes 8

optimization Proposition. Any solution $m{ heta}^*$ to the problem $\min_{m{ heta} \in \mathbb{R}^d} \| \mathbf{y} - \mathbf{X} m{ heta} \|_2^2$ must satisfy $\mathbf{X}^{\intercal}\mathbf{X}\boldsymbol{ heta}^{*}=\mathbf{X}^{\intercal}\mathbf{y}$ igebraic

This system is called *normal equations*

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{ heta}^{*} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$

• $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$

ker(A) = Nul (A) = {x ER": Ax=0} CR" $T_{m}(A) \stackrel{\text{\tiny a}}{=} Col(A) \stackrel{\text{\tiny a}}{=} \frac{1}{2} A_{X} \times E^{m} C R^{m}$

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{ heta}^{*} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$

• $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$

$$\bullet \operatorname{col}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{row}(\mathbf{A}) \subset \mathbb{R}^{n}$$

NXN

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

- $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$
- $\operatorname{col}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{row}(\mathbf{A})$
- row(A) and ker A are orthogonal complements

We can say a lot more about the normal equations

1. There is always a solution

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{ heta}^{*} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ ded

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

- $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$
- $\operatorname{col}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{row}(\mathbf{A})$
- row(A) and ker A are orthogonal complements

We can say a lot more about the normal equations

1. There is always a solution

2. If $rank(\mathbf{X}) = d$, there is a unique solution: $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

(blc XX is invertible)

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{ heta}^{*} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

- $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$
- $\operatorname{col}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{row}(\mathbf{A})$
- row(A) and ker A are orthogonal complements

We can say a lot more about the normal equations

- 1. There is always a solution
- 2. If $rank(\mathbf{X}) = d$, there is a unique solution: $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$
- 3. if $rank(\mathbf{X}) < d$ there are infinitely many non-trivial solution

If rank(X) < d $ker(X) \neq \phi$ 3 Oo of Boto and XDo=0 For any solution Or of the normal equa OK+Oo is also a solution $X^{T}X(0^{\mu}+0) = X^{T}X0^{\mu} = X^{T}y$ Remark: the pace of solutions is $\theta^{k} + k$

Remark. Assume
$$\tilde{\Theta}$$
 a solution of $X\bar{X}\bar{\Theta} = X^{T}y$ (in addition Θ^{*})
Then $\tilde{\Theta} \stackrel{a}{=} \underbrace{\Theta^{*} + \tilde{\Theta} - \Theta^{*}}_{X^{T}X(\tilde{\Theta} - \Theta^{*})} = X^{T}y - X^{T}y = 0$ so that $\tilde{\Theta} - \Theta^{*} \in Ker(x)$
Hence $S \subset \Theta^{*} + Ker(X)$
space of solutions

 $(X^T X) = Ker(X)$

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy $(\mathbf{X} \in \mathbb{R}^{n \times d})$

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{ heta}^{*} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

- $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$
- $\operatorname{col}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{row}(\mathbf{A})$

• row(A) and ker A are orthogonal complements

We can say a lot more about the normal equations

1. There is always a solution

2. If $rank(\mathbf{X}) = d$, there is a unique solution: $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$ 3. if $rank(\mathbf{X}) < d$ there are infinitely many non-trivial solution 4. if $\mathsf{rank}(\mathbf{X}) = n$, there exists a solution $\boldsymbol{\theta}^*$ for which $\mathbf{y} = \mathbf{X}\boldsymbol{\theta}^*$ L X= [7

Note: rank(X)=n Heen XX^T is invertible * so that XXTXO = XXTY and XO"=y $||y-XO^*||_2^2 = 0$

Proposition. Any solution θ^* to the problem $\min_{\theta \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\theta\|_2^2$ must satisfy

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{ heta}^{*} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

This system is called *normal equations*

Facts: for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

- $\ker \mathbf{A}^{\mathsf{T}}\mathbf{A} = \ker \mathbf{A}$
- $\operatorname{col}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{row}(\mathbf{A})$
- row(A) and ker A are orthogonal complements

We can say a lot more about the normal equations

- 1. There is always a solution
- 2. If $rank(\mathbf{X}) = d$, there is a unique solution: $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$
- 3. if $rank(\mathbf{X}) < d$ there are infinitely many non-trivial solution
- 4. if $\mathsf{rank}(\mathbf{X}) = n$, there exists a solution $\boldsymbol{\theta}^*$ for which $\mathbf{y} = \mathbf{X}\boldsymbol{\theta}^*$

In machine learning, there are often infinitely many solutions

MINIMUM NORM 2 SOLUTIONS

One reasonable to choose a solution among infinitely many is the *minimum energy* principle

$$\min_{oldsymbol{ heta}\in\mathbb{R}^d} \|oldsymbol{ heta}\|_2^2 ext{ such that } \mathbf{X}^\intercal \mathbf{X}oldsymbol{ heta} = \mathbf{X}^\intercal \mathbf{y}$$

• We will see the solution is always unique using the SVD

For now, assume that $rank(\mathbf{X}) = \mathbf{a}$, so that the problem becomes

$$\min_{oldsymbol{ heta}\in\mathbb{R}^d} \|oldsymbol{ heta}\|_2^2 ext{ such that } \mathbf{X}oldsymbol{ heta} = \mathbf{y}$$

MINIMUM NORM 2 SOLUTIONS

One reasonable to choose a solution among infinitely many is the *minimum energy* principle

$$\min_{oldsymbol{ heta} \in \mathbb{R}^d} \left\|oldsymbol{ heta}
ight\|_2^2 ext{ such that } \mathbf{X}^\intercal \mathbf{X} oldsymbol{ heta} = \mathbf{X}^\intercal \mathbf{y}$$

We will see the solution is always unique using the SVD

For now, assume that $rank(\mathbf{X}) = \mathbf{A}$, so that the problem becomes $\min_{oldsymbol{ heta} \in \mathbb{R}^d} \|oldsymbol{ heta}\|_2^2 ext{ such that } \mathbf{X}oldsymbol{ heta} = \mathbf{y}$ **Proposition.** The solution is $\theta^* = \mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}\mathbf{y} \in \mathbb{R}^d$ $\chi^{\mathsf{T}}(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{\mathsf{T}}\mathbf{y}$ is in col($(\mathbf{X}^{\mathsf{T}})$ -crow((\mathbf{X})) = span($\{\mathbf{X}_i\}_{i=1}^n$)

Proof: A solution is in
$$\mathbb{R}^{d} = \ker(X) \oplus \operatorname{row}(X)$$
 so that it can be write
 $\left(X = \begin{pmatrix} -X_{1} \\ -X_{2} \end{pmatrix} \in \mathbb{R}^{n_{nd}}\right)$
Hence we are loolery for min $\|\theta_{1} + \theta_{2}\|_{2}^{2}$ st $X(\theta_{1} + \theta_{2}) = \theta_{1} \operatorname{con}(X)$
 $\Theta_{1} \in \operatorname{con}(X)$
 $G_{2} \in \operatorname{con}(X)$
Since $\ker(X)^{2} = \operatorname{row}(X)$ then $\|\theta_{1} + \theta_{2}\|_{2}^{2} = \|\theta_{1}\|^{2} + \|\theta_{2}\|^{2}$
Herve any solution of the public number be such that $\theta_{2} = 0$ and number
Theorem we can parametrize any solution as $\theta = X^{T} \times O$
 Our equivalent public is then to find unine $\|X^{T} \times \|_{2}^{2}$ s.t.
The only solution is actually we $\mathcal{K} = (XX^{T})^{-1}y$ so that $\theta = X^{T}$

Recall the problem

 $\min_{oldsymbol{ heta}\in\mathbb{R}^d} \|oldsymbol{ heta}\|_2^2 ext{ such that } \mathbf{X}^\intercal \mathbf{X}oldsymbol{ heta} = \mathbf{X}^\intercal \mathbf{y}$

- There are infinitely many solution if $\ker \mathbf{X}$ is non trivial
- The space of solution is unbounded! (OK, Oo : 10, -Od z is unbounded)

Recall the problem

- There are infinitely many solution if ker X is non trivial
- The space of solution is unbounded! (+)
- Even if $\ker \mathbf{X} = \{0\}$, the system can be poorly conditioned

Regularization with $\lambda > 0$ consists in solving

Recall the problem

 $\min_{oldsymbol{ heta}\in\mathbb{R}^d} \|oldsymbol{ heta}\|_2^2 ext{ such that } \mathbf{X}^\intercal \mathbf{X}oldsymbol{ heta} = \mathbf{X}^\intercal \mathbf{y}$

- There are infinitely many solution if ker X is non trivial
- The space of solution is unbounded!
- Even if $\ker \mathbf{X} = \{0\}$, the system can be poorly conditioned

Regularization with $\lambda > 0$ consists in solving

$$\min_{oldsymbol{ heta} \in \mathbb{R}^d} \| \mathbf{y} - \mathbf{X} oldsymbol{ heta} \|_2^2 + \lambda \| oldsymbol{ heta} \|_2^2$$

This problem *always* has a unique solution

Proposition. The solution is $\theta^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I})^{-1}\mathbf{y}$

= Xy invertible!

$ww = ||Xw||_{2}^{2} + \lambda ||w||_{2}^{2} \ge 0$

We want to show that
$$\Theta = X^T (XX^T + \lambda I)^T y$$

Since Θ is unique, all we have to check is that Θ is a solution of $(X^TX + \lambda I)\Theta = x$
Note that $(X^TX + \lambda I)X^T (XX^T + \lambda I)^T y = (X^TX X^T + \lambda X^T) (XX^T + \lambda I)^T y$
did
 $X = X^T (XX^T + \lambda I) (XX^T + \lambda I)^T y$
 $= X^T (XX^T + \lambda I) (XX^T + \lambda I)^T y$

 $(+ dT) O = X^T y$

Recall the problem

 $\min_{oldsymbol{ heta}\in\mathbb{R}^d} \|oldsymbol{ heta}\|_2^2 ext{ such that } \mathbf{X}^\intercal \mathbf{X}oldsymbol{ heta} = \mathbf{X}^\intercal \mathbf{y}$

- There are infinitely many solution if $\ker \mathbf{X}$ is non trivial
- The space of solution is unbounded!
- Even if $\ker \mathbf{X} = \{0\}$, the system can be poorly conditioned

Regularization with $\lambda > 0$ consists in solving

$$\min_{oldsymbol{ heta} \in \mathbb{R}^d} \| \mathbf{y} - \mathbf{X} oldsymbol{ heta} \|_2^2 + \lambda \| oldsymbol{ heta} \|_2^2$$

This problem *always* has a unique solution

Proposition. The solution is $\theta^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I})^{-1}\mathbf{y}$ Note that θ^* is the row space of \mathbf{X}

$$oldsymbol{ heta}^* = \mathbf{X}oldsymbol{lpha}$$
 with $oldsymbol{lpha} = (\mathbf{X}\mathbf{X}^\intercal + \lambda\mathbf{I})^{-1}\mathbf{y}$