REGRESSION

DR. MATTHIEU R BLOCH

Wednesday October 06, 2021



LOGISTICS

Assignment 4 assigned Tuesday, October 5, 2021
= Includes a (small) programming component

= Due October 14, 2021 (soft deadline, hard deadline on October 16)



WHAT’S ON THE AGENDA FOR TODAY?

Last time: Least-square regression

Today
= Solving linear least-square regression
= Extension to infinite dimension

Reading: Romberg, lecture notes 8
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SOLVING THE LEAST-SQUARES PROBLEM

Proposition. Any solution 8* to the problem mingcga ||y — X 6|2 must satisfy
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SOLVING THE LEAST-SQUARES PROBLEM

Proposition. Any solution 8* to the problem mingcg« ||y — X 6|2 must satisfy

XTX0" =Xy
This system is called normal equations
Facts: for any matrix A € R™*"
" ker ATA = ker A
= col(ATA) =row(A)
= row(A) and ker A are orthogonal complements

We can say a lot more about the normal equations

1. Thereis always a solution

2. If rank(X) = d, there is a unique solution: (ATA)1ATy
3.ifrank(X) < d there are infinitely many non-trivial solution
4. if rank(X) = n, there exists a solution 8* for whichy = X6*

In machine learning, there are often infinitely many solutions



MINIMUM NORM 2 SOLUTIONS

One reasonable to choose a solution among infinitely many is the minimum energy principle
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= We will see the solution is always unique using the SVD

For now, assume that rank(X) = @, so that the problem becomes
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REGULARIZATION

Recall the problem

min ||@||5 such that XTX60 = XTy
OcRe

» There are infinitely many solution if ker X is non trivial
= The space of solution is unbounded! (&%.8, . &%%8dl, wlawnM)
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REGULARIZATION

Recall the problem

min ||@||5 such that XTX60 = XTy
OcRe

» There are infinitely many solution if ker X is non trivial
= The space of solution is unbounded!
= Even if ker X = {0}, the system can be poorly conditioned

Regularization with A > 0 consists in solving

in ||y — X605 + \||0||;
min [y I3 + All6]]3

= This problem always has a unique solution

Proposition. The solution is @* = (%—I— A1 X Ty = XT(XXT + M)ty
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REGULARIZATION

Recall the problem

min ||@||5 such that XTX60 = XTy
OcRe

» There are infinitely many solution if ker X is non trivial
= The space of solution is unbounded!
= Even if ker X = {0}, the system can be poorly conditioned

Regularization with A > 0 consists in solving

in ||y — X605 + \||0||;
min |y I + All6]]3

= This problem always has a unique solution
Proposition. The solutionis 8* = (XTX + A\I) !XTy = XT(XXT + A\I) 1y
Note that 8* is the row space of X

0* = Xa witha = (XXT+ AI) 'y



