REPRESENTER THEOREM

DR. MATTHIEU R BLOCH

Wednesday October 13, 2021



LOGISTICS

Assignment 4 due October 14, 2021
= Hard deadline on October 16

= Small update posted

Kayla’s office hours tomorrow Thursday October 14, 2021: 11am

Assignment 2 grades released: (2.6/2.7/2.8 not graded)
= Mean: 22.64 - Median: 23.1 - Min: 7.5 - Max: 24.6 (clipped at 24)

Assignment 3: 45% graded
Midterm 1: 75% graded



WHAT’S ON THE AGENDA FOR TODAY?

Last time: solving least squares
= Minimum || - || 9 solution
= Regularized least squares
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WHAT’S ON THE AGENDA FOR TODAY?

Last time: solving least squares
= Minimum || - || 9 solution
= Regularized least squares

Today
m Extension to infinite dimension
= Representer theorem

Reading: Romberg, lecture notes 8/9



RIDGE REGRESSION

We can adapt the regularization approach to the situation of a flnlté dimension Hilbert space F
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RIDGE REGRESSION

We can adapt the regularization approach to the situation of a finite dimension Hilbert space F

n

: 2 2
min — f(x; A
nip > (0~ )’ + MIAI% 6
. o Oppvelent
= We are penalizing the norm of the entire function f
Using a basis for the space {wi}?zl , and constructing W as earlier, we obtain
min ||y — ®0||; + \0TGO (o=
OcRd / K
with G the Gram matrix for the basis. Alrmlr o Logis A‘deg o bogs
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RIDGE REGRESSION

We can adapt the regularization approach to the situation of a finite dimension Hilbert space F

n

I;éi]l__l 2 (i — F(x:))2 + A fll %

= We are penalizing the norm of the entire function f

Using a basis for the space {wi}?zl , and constructing W as earlier, we obtain

min ||y — 0|2 + \0TG6
OcR4

with G the Gram matrix for the basis.
' ANZZ
IfEIlT\Il + )\G]is invertible, we find the solution as

:mauml

0" = (TTE + AG)'wTy V

and we can reconstruct the function as f(x) = Zle 6] I K
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RIDGE REGRESSION

We can adapt the regularization approach to the situation of a finite dimension Hilbert space F

n

min'} (y; — £(x:))? + A|| fI|%

feF 1

= We are penalizing the norm of the entire function f

Using a basis for the space {wi}?zl , and constructing W as earlier, we obtain

min ||y — ®0)||; + \0TGO
OcR4

with G the Gram matrix for the basis.

If WTW + A\Gisinvertible, we find the solution as

0" = (¥ + \G) 1\IIT L\) (\'VLQ*}QG- b&} = |owan emb o
i mw:# ﬂ)_
LYISL('K(K*\ Uzl

and we can reconstruct the function as f(x) = Zle 0% p;(x).

If & is well conditioned, the resulting function is not too sensitive to the choice of the basis



LEAST-SQUARES IN INFINITE DIMENSION HILBERT SPACES

InR?, the problem mingcg ||y — X85 + A[|@]|; has a solution
0" = X"a witha = (XXT+AI) 1y

XXT e R™"™jis dimension independent! We will be able to extend this to infinite dimensional Hilbert spaces!

Let F be a Hilbert space and let f € F be the function we are trying to estimate

= We will estimate f € F using noisy observationith {z;}._, elements of F / '!f:.f gﬁ %,
)
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LEAST-SQUARES IN INFINITE DIMENSION HILBERT SPACES

InR?, the problem mingcg ||y — X85 + A[|@]|; has a solution
0" = X" with a = (XXT + A\I) !

XXT e R™"™jis dimension independent! We will be able to extend this to infinite dimensional Hilbert spaces!
Let F be a Hilbert space and let f € F be the function we are trying to estimate

= We will estimate f € F using noisy observations (f, z;) with {x;}_; elements of F

= Thisis the equivalent of sayingy = Ax + nin finite dimension

Proposition (Representer theorem)

Z,
minZ‘yz <f733z> ‘ ‘|‘)‘||fl|ﬁ

whn
has solution / Al /615i

Q(w witha = (K + M)ty K = [(z;, z;)]
ENC

1<2,7<n
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LEAST-SQUARES IN INFINITE DIMENSION HILBERT SPACES

InR?, the problem mingcg ||y — X85 + A[|@]|; has a solution
0" = X"a witha = (XXT+AI) 1y

XXT e R™"™jis dimension independent! We will be able to extend this to infinite dimensional Hilbert spaces!
Let F be a Hilbert space and let f € F be the function we are trying to estimate

= We will estimate f € F using noisy observations (f, z;) with {x;}_; elements of F

= Thisis the equivalent of sayingy = Ax + nin finite dimension

Proposition (Representer theorem)

: 2
min Y [y; — (£, 20) )" + Al fll
has solution

f = ;azwz with ¢ = (K + )\I)_ly K = [<x27 wj”lgi,jgn

]

We will see that the situation of the representer theorem happens in Reproducing Kernel Hilber Space (RKHS)



