REPRODUCING KERNEL HILBERT SPACES

Dr. Matthieu R Bloch
Monday, October 18, 2021

LOGISTICS

Grades upcoming

- Midterm 1 99\% graded - Grades announced after curving (don't panic)
- Assignment 2 solution underway
- Assignment 3 graded
- Assignment 4 grading started
- Drop date: check!

More office hours

- Tuesday October 19, 2021 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- Come prepared!

Midterm 2: scheduled for Wednesday November 3, 2021

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

WHAT'S ON THE AGENDA FOR TODAY?

Last time: Representer theorem

- Some infinite dimensional regression problems have surprising solutions!
- We can compute the solution as (finite) linear combination of feature vectors
- (We have to wrap up the proof)

Today:

- Reproducing Kernel Hilbert Spaces
- Justifies the kind of Hilbert spaces where regularized regression can be solved

Reading: Romberg, lecture notes 10

$\mathbf{X} \mathbf{X}^{\top} \in \mathbb{R}^{n \times n}$ is dimension independent! We will be able to extend this to infinite dimensional Hilbert spaces!
Let \mathcal{F} be a Hilbert space and let $f \in \mathcal{F}$ be the function we are trying to estimate

- We will estimate $f \in \mathcal{F}$ using noisy observations $\left\langle f, x_{i}\right\rangle$ with $\left\{x_{i}\right\}_{i=1}^{n}$ elements of \mathcal{F}
- This is the equivalent of saying $\mathbf{y}=\mathbf{A x}+\mathbf{n}$ in finite dimension

Proposition (Representer theorem)

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n}\left|y_{i}-\left\langle f, x_{i}\right\rangle\right|^{2}+\lambda\|f\|^{2}
$$

has solution

$$
f=\sum_{i=1}^{n} \alpha_{i} x_{i} \text { with } \boldsymbol{\alpha}=(\mathbf{K}+\lambda \mathbf{I})^{-1} \mathbf{y} \quad \mathbf{K}=\left[\left\langle x_{i}, x_{j}\right\rangle\right]_{1 \leq i, j \leq n}
$$

Proof: last time we pored that wog we can assume $f \in S_{p a n}\left(\left\{_{x_{i}}\right\}_{i=1}^{n}\right)$
Let \hat{f} be our minimizer, we can wonk $\hat{f}=\sum_{i=1}^{n} \hat{\alpha}_{2} x_{i} \quad\left\{\hat{\alpha}_{i}\right\} \in \mathbb{R} \quad\left\{x_{i}\right\}_{i=1}^{n} \in \mathbb{J}$
Note: let $u, v \in S_{\text {pan }}\left(\left\{x_{i}\right\}_{i=1}^{n}\right)$ then $v=\sum_{i=1}^{n} c_{i} x_{i} \in \mathbb{R} \quad v=\sum_{i=1}^{n} d_{i} x_{i} \in \mathbb{R}$

$$
\begin{aligned}
& \langle v, v\rangle z_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} d_{j} \underbrace{\left\langle x_{i} x_{i}\right\rangle}_{G_{i j}}=d^{\top} G_{c} \quad w / \quad d \triangleq=\left(d_{1} \ldots d_{n}\right)^{\top} \text { and } c \triangleq\left(c_{1} \ldots c_{n}\right)^{\top} \\
& G_{i j} \text { component of Gram matrix for }\left\{x_{i}\right\}_{i=1}^{n} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { note that } \left.G \alpha=\left[\begin{array}{c}
\left\langle x_{1}, x_{1}\right\rangle\left\langle x_{1}, x_{2}\right\rangle \ldots \\
\vdots \\
\vdots \\
\left\langle x_{n}, x_{1}\right\rangle \\
\vdots
\end{array}\right],\left\langle x_{1}, x_{n}\right\rangle\right]\left[\begin{array}{c}
\left.\alpha_{1}, x_{n}\right\rangle \\
\vdots \\
\vdots \\
\alpha_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{n} \alpha_{j}\left\langle x_{1}, x_{j}\right\rangle=\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{1}\right\rangle \\
\vdots \\
\vdots
\end{array}\right] \\
& (*)=\min _{\alpha \in \mathbb{R}^{n}}\|y-G \alpha\|_{2}^{2}+\lambda \alpha^{\top} G \alpha
\end{aligned}
$$

THE BIG PICTURE

We want to solve the fate dimensional problem

$$
\begin{equation*}
\min _{\alpha \in \mathbb{R}^{n}}\left\|^{1} y-G \alpha\right\|_{z}^{2}+\lambda \alpha^{\top} G \alpha \tag{*}
\end{equation*}
$$

Taking the gradient of ($*$) and setting to O we obtain
True b/e G is symmetric

$$
\begin{aligned}
\nabla\left(y^{\top} y-2 y^{\top} G \alpha+\alpha^{\top} G^{\top} G \alpha+\lambda \alpha^{\top} G \alpha\right)=0 & \Leftrightarrow-2 G^{\top} y+2 G^{\top} G \alpha+2 \lambda G \alpha=0 \\
& \Leftrightarrow G^{\top}(G \alpha-y)+\lambda G \alpha=0
\end{aligned}
$$

Assume we pick α such that $\underbrace{(G+d I)}_{\text {invechble }} \alpha=y \quad\left[(G+d I)^{-1} y\right.$ world work $]$

THE BIG PICTURE

For a Hilbert space $\backslash(\backslash c a l F \backslash)$ and $\backslash(n \backslash)$ pairs $\backslash\left(\left(x_{-} i, y _i\right) \backslash i n \backslash c a l F \backslash\right.$ times $\left.\backslash b b R \backslash\right)$, we know how to solve the following problem with linear algebra \[\backslash min_\{f \backslash in $\backslash c a l F\} \backslash s u m _\{i=1\} \wedge n \backslash a b s\left\{y _i-\{\backslash d o t p\{f\}\right.$
$\left.\left.\left\{x_{-} i\right\}\right\} _\{\backslash c a l F\}\right\}^{\wedge} 2+\backslash$ lambda\norm[\calF]\{f\} $\left.\backslash\right]$

$$
\text { Set } \begin{aligned}
G^{\top}\left(G \alpha=(G+d I)^{-1} y\right.
\end{aligned}
$$

THE BIG PICTURE

For a Hilbert space \mathcal{F} and n pairs $\left(x_{i}, y_{i}\right) \in \mathcal{F} \times \mathbb{R}$, we know how to solve the following problem with linear algebra

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n}\left|y_{i}-\left\langle f, x_{i}\right\rangle_{\mathcal{F}}\right|^{2}+\lambda\|f\|_{\mathcal{F}}
$$

We would really like to solve the following problem for n pairs $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}$

$$
\min _{f \in \mathcal{F}} \sum_{i=1}^{n}\left|y_{i}-f\left(\mathbf{x}_{i}\right)\right|^{2}+\lambda\|f\|_{\mathcal{F}}
$$

The question whether $f\left(\mathbf{x}_{i}\right)=\left\langle f, x_{i}\right\rangle_{\mathcal{F}}$ for some $x_{i} \in \mathcal{F}$ function of \mathbf{x}_{i}

- Can this be done?
- We can choose what \mathcal{F} is!

Reproducing Kernel Hilbert Spaces (RKHSs) are specific Hilbert spaces where this happens to be true

- Specifcally, this is a Hilbert space of functions in whih the sampling linear operation is a continuous linear functional

As usual, we're throwing definitions at out problem to make progress

LINEAR FUNCTIONS ON HILBERT SPACES

In what follows, \mathcal{F} is a Hilbert space with scalar field \mathbb{R}

Definition.

A functional $F: \mathcal{F} \rightarrow \mathbb{R}$ associates real-valued number to an element of a Hilbert space \mathcal{F}
Notation can be tricky when the Hilbert space is a space of functions: F can act on a function $f \in \mathcal{F}$

Examples

Definition.
A functional $F: \mathcal{F} \rightarrow \mathbb{R}$ is continuous if

$$
\forall \epsilon>0 \exists \delta>0 \text { such that }\|x-y\|_{\mathcal{F}} \leq \delta \Rightarrow|F(x)-F(y)| \leq \epsilon
$$

|Proposition. All norms are continuous functionals $F: \mathcal{F} \rightarrow \mathbb{R}: x \mapsto\langle x, c\rangle$ for some $c \in \mathcal{F}$ is continuous

Definition.

A functional F is linear if $\forall a, b \in \mathbb{R} \forall x, y \in \mathcal{F} F(a x+b y)=a F(x)+b F(y)$.

REPRESENTATION OF (CONTINUOUS) LINEAR FUNCTIONALS

Proposition.

Let $F: \mathcal{F} \rightarrow \mathbb{R}$ be a linear functional on an n-dimensional Hilbert space \mathcal{F}.
Then there exists $c \in \mathcal{F}$ such that $F(x)=\langle x, c\rangle$ for every $x \in \mathcal{F}$
Linear functional over finite dimensional Hilbert spaces are continuous!
This is not true in infinite dimension
Theorem (Riesz representation theorem)
Let $F: \mathcal{F} \rightarrow \mathbb{R}$ be a continuous linear functional on a (possible infinite dimensional) separable Hilbert space \mathcal{F}.

Then there exists $c \in \mathcal{F}$ such that $F(x)=\langle x, c\rangle$ for every $x \in \mathcal{F}$

Proposition. If $\left\{\psi_{n}\right\}_{n \geq 1}$ is an orthobasis for \mathcal{H}, then we can construct c above as

$$
c \triangleq \sum_{n=1}^{\infty} F\left(\psi_{n}\right) \psi_{n}
$$

REPRODUCING KERNEL HILBERT SPACES

Definition. (Reproducing Kernel Hilbert Spaces)
An RKHS is a Hilbert space \mathcal{H} of real-valued functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ in which the sampling operation $\mathcal{S}_{\boldsymbol{\tau}}: \mathcal{H} \rightarrow \mathbb{R}: f \mapsto f(\boldsymbol{\tau})$ is continuous for every $\boldsymbol{\tau} \in \mathbb{R}^{d}$.

In other words, for each $\boldsymbol{\tau} \in \mathbb{R}^{d}$, there exists $k_{\boldsymbol{\tau}} \in \mathcal{H}$ s.t.

$$
f(\tau)=\left\langle f, k_{\tau}\right\rangle_{\mathcal{H}} \text { for all } f \in \mathcal{H}
$$

Definition. (Kernel)
The kernel of an RKHS is

$$
k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}:(\mathbf{t}, \boldsymbol{\tau}) \mapsto k_{\boldsymbol{\tau}}(\mathbf{t})
$$

where $k_{\boldsymbol{\tau}}$ is the element of \mathcal{H} that defines the sampling at $\boldsymbol{\tau}$.
Proposition. A (separable) Hilbert space with orthobasis $\left\{\psi_{n}\right\}_{n \geq 1}$ is an RKHS iff $\forall \boldsymbol{\tau} \in \mathbb{R}^{d}$ $\left.\left|\sum_{n=1}^{\infty}\right| \psi_{n}(\tau)\right|^{2}<\infty$

RKHS AN NON ORTHOGONAL BASIS

If $\left\{\phi_{n}\right\}_{n \geq 1}$ is a Riesz basis for \mathcal{H}, we know that every $x \in \mathcal{H}$ can be written

$$
x=\sum_{n \geq 1} \alpha_{n} \phi_{n} \text { with } \alpha_{n} \triangleq\left\langle x, \widetilde{\phi}_{n}\right\rangle
$$

where $\left\{\widetilde{\phi}_{n}\right\}_{n \geq 1}$ is the dual basis.
|Proposition. A (separable) Hilbert space with Riesz basis $\left\{\phi_{n}\right\}_{n \geq 1}$ is an RKHS with kernel

$$
k(\mathbf{t}, \boldsymbol{\tau}) \sum_{n=1}^{\infty} \phi_{n}(\boldsymbol{\tau}) \widetilde{\phi}_{n}(\mathbf{t})
$$

iff $\forall \boldsymbol{\tau} \in \mathbb{R}^{d} \sum_{n=1}^{\infty}\left|\phi_{n}(\tau)\right|^{2}<\infty$

