# **REPRODUCING KERNEL HILBERT SPACES**

**DR. MATTHIEU R BLOCH** 

Wednesday October 20, 2021

## LOGISTICS

Drop date: October 30, 2021

#### More office hours

- Tuesdays 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- Come prepared!

Midterm 2: initially scheduled for Wednesday November 3, 2021

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

## WHAT'S ON THE AGENDA FOR TODAY?

#### Last time:

- Motivation for RKHS
- Functional on Hilbert spaces

Today:

Reproducing Kernel Hilbert Spaces

**Reading:** Romberg, lecture notes 10

In what follows,  $\mathcal{F}$  is a Hilbert space with scalar field  $\mathbb{R}$ 

Definition.

A functional  $F:\mathcal{F} o\mathbb{R}$  associates real-valued number to an element of a Hilbert space  $\mathcal{F}$ 

Notation can be tricky when the Hilbert space is a space of functions: F can act on a function  $f \in \mathcal{F}$ 

Examples

$$F: f \to R: \times \mapsto \langle \times_{1} C \rangle_{se} \quad f_{n} \quad some \quad c \in F \\ F: L_{2}(R) \longrightarrow R: f \longmapsto \int_{c \to 0}^{c \to 0} f(t) \omega(t) dt \quad f_{n} \quad some \quad \omega(t) \in IR \\ \leq t \to 0 \\ \leq t \to 0$$



In what follows,  $\mathcal{F}$  is a Hilbert space with scalar field  $\mathbb{R}$ 

Definition.

A functional  $F:\mathcal{F} o\mathbb{R}$  associates real-valued number to an element of a Hilbert space  $\mathcal{F}$ 

Notation can be tricky when the Hilbert space is a space of functions: F can act on a function  $f \in \mathcal{F}$ 

#### Examples

### Definition.

A functional  $F:\mathcal{F} 
ightarrow \mathbb{R}$  is continuous at  $x \in \mathcal{F}$  if

 $orall \epsilon > 0 \exists \delta > 0 ext{ such that } \|x - y\|_{\mathcal{F}} \leq \delta \Rightarrow |F(x) - F(y)| \leq \epsilon$ If this is true for every  $x \in \mathcal{F}$ , F is continuous.

Warning: I wasn't careful enough last time in the definition of continuity



# $|F(x) - F(y)| \le \varepsilon$

In what follows,  $\mathcal{F}$  is a Hilbert space with scalar field  $\mathbb{R}$ 

Definition.

A functional  $F:\mathcal{F} o\mathbb{R}$  associates real-valued number to an element of a Hilbert space  $\mathcal{F}$ 

Notation can be tricky when the Hilbert space is a space of functions: F can act on a function  $f \in \mathcal{F}$ 

#### Examples

### Definition.

A functional  $F:\mathcal{F} 
ightarrow \mathbb{R}$  is continuous at  $x \in \mathcal{F}$  if

 $ert \epsilon > 0 \exists \delta > 0$  such that  $\|x - y\|_{\mathcal{F}} \leq \delta \Rightarrow |F(x) - F(y)| \leq \epsilon$ 

If this is true for every  $x \in \mathcal{F}, F$  is continuous.

Warning: I wasn't careful enough last time in the definition of continuity

**Proposition.** 

- 1. All norms are continuous functionals
- 2.  $F: \mathcal{F} \to \mathbb{R}: x \mapsto \langle x, c 
  angle$  for some  $c \in \mathcal{F}$  is continuous



### $orall x,y\in \mathcal{F}$

### **Definition.**

A functional F is linear if  $\forall a, b \in \mathbb{R} \ \forall x, y \in \mathcal{F} \ F(ax + by) = aF(x) + bF(y)$ .

Remark. F(0)=0 of Flinearity (F(0) = F(0.x) = 0.F(x) = 0 f(1) = f(0.x) = 0.F(x) = 0 f(1) = 0.F(x) = 0 f(1) = 0.F(x) = 0

**Definition**.

A functional F is linear if  $orall a, b \in \mathbb{R} \ orall x, y \in \mathcal{F} F(ax+by) = aF(x) + bF(y).$ 

Continuous linear function are much more constrained than one would imagine

### **Definition.**

A functional F is linear if  $\forall a, b \in \mathbb{R} \ \forall x, y \in \mathcal{F} \ F(ax + by) = aF(x) + bF(y)$ .

Continuous linear functions are much more constrained than one would imagine

### **Definition.**

A linear functional  $F:\mathcal{F} \to \mathbb{R}$  is bounded if there exists M>0 such that

$$orall x \in \mathcal{F} \quad |F(x)| \leq M \, {\mid\!\mid} \, x \, {\mid\!\mid} \, {}_{\mathcal{F}}$$

**Proposition.** A linear functional on a Hilbert space that is cognitinuous at 0 is bounded.

Proof: Since Fis continuous at 0, 
$$\forall 6>0 \exists 5>0 \text{ c.t.} ||0-y||_{\mathcal{F}} \leq 5 \Rightarrow |F(z)||_{\mathcal{F}}$$
  
In panhidan, we can choose  $\mathcal{E} = 4$ ; we know that  $\exists 5>0 \text{ c.t.}$   $\|y\| \leq 5$   
Hence  $\forall x \in \mathcal{F}[30] |F(x)| = |F(x \times \frac{5}{8} \times \frac{\|x\|}{8})| = \frac{\|x\|}{8} |F(x \times \frac{5}{8} \times \frac{\|x\|}{8})| = \frac{\|x\|}{8} |F(x \times \frac{5}{8} \times \frac{\|x\|}{8})| = \frac{\|x\|}{8} |F(x \times \frac{5}{8} \times \frac{1}{8} \times \frac{1}{8})| = \frac{1}{8}$   
Therefore  $\exists M > 0 (M = \frac{1}{8}) \text{ s.t.} \forall x \in \mathcal{F} |F(x)| \in M. ||x||$ 

 $|F(y)| \leq \epsilon$  $|F(y)| \leq \epsilon$ 

 $\delta \Rightarrow F(y) \leq 1$ 





### **Definition.**

A functional F is linear if  $\forall a, b \in \mathbb{R} \ \forall x, y \in \mathcal{F} F(ax + by) = aF(x) + bF(y)$ .

Continuous linear functions are much more constrained than one would imagine

### **Definition**.

A linear functional  $F:\mathcal{F}\to\mathbb{R}$  is bounded if there exists M>0 such that

$$orall x \in \mathcal{F} \quad |F(x)| \leq M \, {\mid\!\mid} \, x \, {\mid\!\mid} \, {}_{\mathcal{F}}$$

**Proposition.** A linear functional on a Hilbert space that is countinuous at **0** is bounded. **Definition**.

For a linear functional  $F: \mathcal{F} \to \mathbb{R}$ , the following statements are equivalent:

- 1. F is continuous at 0
- 2. F is continuous at some point  $x \in \mathcal{F}$
- 3. F is continuous everywhere on  ${\cal F}$
- 4. F is uniformly continuous everywhere on  ${\cal F}$

Proof: We know (4) 
$$\Rightarrow$$
 (3)  $\Rightarrow$  (2) (4)  $\Rightarrow$  (1)  
Lot's show that (1)  $\Rightarrow$  (4) [F continuous at  $0 \Rightarrow$  Funiformly continuous]  
 $\forall x, y \in \mathbb{F}$   $|F(x) - F(g)| = |F(x - y)|$  by the contry  
 $= |F(x - y) - F(o)|$  by the contry (F(o) = 0)  
 $\downarrow$   
 $\in \mathbb{F}$   
Since Fis continuous at  $0, \forall \in \exists \leq a$  st  $||y|| \leq \delta_0 \Rightarrow |F(a)| \leq \epsilon$ 

$$|F(x) - F(y)| = |F(x-y) - F(x)| \le \varepsilon \quad \text{if } ||x-y|| \le \delta_{0}$$



## **REPRESENTATION OF (CONTINUOUS) LINEAR FUNCTIONALS**

### Proposition.

Let  $F: \mathcal{F} \to \mathbb{R}$  be a linear functional on an n-dimensional Hilbert space  $\mathcal{F}$ .

Then there exists  $c\in \mathcal{F}$  such that  $F(x)=\langle x,c
angle$  for every  $x\in \mathcal{F}$ 

Linear functional over finite dimensional Hilbert spaces are continuous!

Proof: Let 
$$\{\Psi_{i}\}_{i=1}^{n}$$
 be a althobasis  
For any vedra  $x \in \mathcal{F}$   $x \stackrel{a}{=} \sum_{i=1}^{n} \langle x_{i} \Psi_{i} \rangle \Psi_{i}$   
Then  $F(x) = F(\sum_{i=1}^{n} \langle x_{i} \Psi_{i} \rangle \Psi_{i}) = \sum_{i=1}^{n} \langle x_{i} \Psi_{i} \rangle F(\Psi_{i}) = \langle x_{i}, \sum_{i=1}^{n} \langle x_{i} \Psi_{i} \rangle \Psi_{i}$   
Hence  $\exists c = \sum_{i=1}^{n} F(\Psi_{i}) \Psi_{i}$  st  $\forall x \in \mathcal{F}$   $F(x) = \langle x_{i} c \rangle$ 

 $\frac{\hat{\mathcal{I}}}{\sum_{i=1}^{n}} F(\psi_i) \psi_i$   $\in \mathcal{J}_{i}$  only depends on F and  $\{\psi_i\}_{i=1}^{n}$ 

## **REPRESENTATION OF (CONTINUOUS) LINEAR FUNCTIONALS**

### Proposition.

Let  $F: \mathcal{F} \to \mathbb{R}$  be a linear functional on an n-dimensional Hilbert space  $\mathcal{F}$ .

Then there exists  $c\in \mathcal{F}$  such that  $F(x)=\langle x,c
angle$  for every  $x\in \mathcal{F}$ 

Linear functional over finite dimensional Hilbert spaces are continuous!

This is *not* true in infinite dimension

Example: Consider 
$$F = L_2([0,1])$$
 and  $F_z = sampling operation at Z
$$f(z) = f(z)$$

$$f(z) = f(z)$$$ 

f+bg) = a f(z) + bg(z)

## 1 YEE CONJ

 $\forall s > 0 \quad F_{y_2}(f_1) = 1$  $F_{y_k}(f_k) = 0$ 

#### me 870

## **REPRESENTATION OF (CONTINUOUS) LINEAR FUNCTIONALS**

### **Proposition.**

Let  $F : \mathcal{F} \to \mathbb{R}$  be a linear functional on an *n*-dimensional Hilbert space  $\mathcal{F}$ .

Then there exists  $c\in \mathcal{F}$  such that  $F(x)=\langle x,c
angle$  for every  $x\in \mathcal{F}$ 

Linear functional over finite dimensional Hilbert spaces are continuous!

This is *not* true in infinite dimension

**Theorem (Riesz representation theorem)** 

Let  $F: \mathcal{F} \to \mathbb{R}$  be a *continuous* linear functional on a (possible infinite dimensional) separable Hilbert space  $\mathcal{F}$ .

Then there exists  $c\in \mathcal{F}$  such that  $F(x)=\langle x,c
angle$  for every  $x\in \mathcal{F}$ 

is finite)

(x) F(x) N-++00 F(x) fn some c E F)

One a specific x set 
$$\begin{cases} \forall i \in II_1 \mid \forall I = d_i \triangleq \langle x_i \mid \psi_i \rangle = \beta_i \\ \forall i \geq N = d_i = 0 \end{cases}$$
  
Then  $\left| \sum_{i=1}^{\infty} d_i \beta_i \right| = \left| \sum_{i=1}^{N} \beta_i^2 \right| \leq C \sqrt{\sum_{i=1}^{n} \beta_i^2} ;$  hence  $\sqrt{\sum_{i=1}^{N} \beta_i^2} \leq C$   
Hence  $\forall N = \sum_{i=1}^{N} \beta_i^2 \leq C^2$  and the sense converges ( { $\beta_i$ 's is square some  
Hence  $\sum_{i=1}^{\infty} \beta_i \cdot \psi_i \in J^2$   
Finally,  $F(x) = \sum_{i=1}^{\infty} d_i \cdot \beta_i = \langle \sum_{i=1}^{\infty} d_i \cdot \psi_i \rangle \sum_{i=1}^{\infty} \beta_i \cdot \psi_i \rangle$ 

indep. of N

nunalole)



20/25

## **REPRESENTATION OF (CONTINUOUS) LINEAR FUNCTIONALS**

### **Proposition.**

Let  $F: \mathcal{F} \to \mathbb{R}$  be a linear functional on an *n*-dimensional Hilbert space  $\mathcal{F}$ .

Then there exists  $c\in \mathcal{F}$  such that  $F(x)=\langle x,c
angle$  for every  $x\in \mathcal{F}$ 

Linear functional over finite dimensional Hilbert spaces are continuous!

This is *not* true in infinite dimension

**Theorem (Riesz representation theorem)** 

Let  $F: \mathcal{F} \to \mathbb{R}$  be a *continuous* linear functional on a (possible infinite dimensional) separable Hilbert space  $\mathcal{F}$ .

Then there exists  $c\in \mathcal{F}$  such that  $F(x)=\langle x,c
angle$  for every  $x\in \mathcal{F}$ **Proposition.** 

If  $\{\psi_n\}_{n\geq 1}$  is an orthobasis for  $\mathcal{H}$ , then we can construct c above as

$$c riangleq \sum_{n=1}^\infty F(\psi_n) \psi_n$$

### **Definition.** (Reproducing Kernel Hilbert Spaces)

An RKHS is a Hilbert space  $\mathcal H$  of real-valued functions  $f:\mathbb R^d o\mathbb R$  in which the sampling operation  $\mathcal{S}_{oldsymbol{ au}}:\mathcal{H} o\mathbb{R}:f\mapsto f(oldsymbol{ au})$  is continuous for every  $oldsymbol{ au}\in\mathbb{R}^d.$ 

In other words, for each  $oldsymbol{ au} \in \mathbb{R}^d$ , there exists  $k_{oldsymbol{ au}} \in \mathcal{H}$  s.t.

$$f(oldsymbol{ au}) = ig\langle f, k_{oldsymbol{ au}} ig
angle_{\mathcal{H}} ext{ for all } f \in \mathcal{H}$$



fere 1 (zi) 9  $\begin{cases} GRd \\ \langle f_{1} \times c \rangle_{F} &= f(\underline{x}i) \\ \times iEF & \underline{x}iERd \\ ERKHS & \sum |y-f(\underline{x}i)|^{2} + d ||f||^{2} \\ HI \\ GRKHS & \sum |y-f(\underline{x}i)|^{2} + d ||f||^{2} \end{cases}$ 

### **Definition.** (Reproducing Kernel Hilbert Spaces)

An RKHS is a Hilbert space  $\mathcal H$  of real-valued functions  $f:\mathbb R^d o\mathbb R$  in which the sampling operation  $\mathcal{S}_{oldsymbol{ au}}:\mathcal{H} o\mathbb{R}:f\mapsto f(oldsymbol{ au})$  is continuous for every  $oldsymbol{ au}\in\mathbb{R}^d$ .

In other words, for each  $\boldsymbol{\tau} \in \mathbb{R}^d$ , there exists  $k_{\boldsymbol{\tau}} \in \mathcal{H}$  s.t.

$$f(oldsymbol{ au}) = ig\langle f, k_{oldsymbol{ au}} ig
angle_{\mathcal{H}} ext{ for all } f \in \mathcal{H}$$

**Definition.** (Kernel)

The kernel of an RKHS is

$$k: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}: (\mathbf{t}, oldsymbol{ au}) \mapsto k_{oldsymbol{ au}}(\mathbf{t})$$

where  $k_{\tau}$  is the element of  $\mathcal{H}$  that defines the sampling at  $\tau$ .

#### **Proposition.**

A (separable) Hilbert space with orthobasis  $\{\psi_n\}_{n\geq 1}$  is an RKHS iff  $orallm{ au}\in\mathbb{R}^d\sum_{n=1}^\infty |\psi_n( au)|^2<\infty$ 



## **RKHS AND NON ORTHOGONAL BASIS**

If  $\{\phi_n\}_{n\geq 1}$  is a Riesz basis for  $\mathcal H$ , we know that every  $x\in \mathcal H$  can be written

$$x = \sum_{n \geq 1} lpha_n \phi_n$$
 with  $lpha_n riangleq \langle x, \widetilde{\phi}_n 
angle$ 

where  $\{\widetilde{\phi}_n\}_{n\geq 1}$  is the dual basis.

#### **Proposition.**

A (separable) Hilbert space with Riesz basis  $\{\phi_n\}_{n\geq 1}$  is an RKHS with kernel

$$k(\mathbf{t},oldsymbol{ au}) = \sum_{n=1}^\infty \phi_n(oldsymbol{ au}) \widetilde{\phi}_n(\mathbf{t})$$

iff  $orall oldsymbol{ au} \in \mathbb{R}^d \sum_{n=1}^\infty \left| \phi_n( au) 
ight|^2 < \infty$