Dr. Matthieu R Bloch
Monday, October 25, 2021
Drop date: October 30, 2021
My office hours tomorrow
Midterm 2:
Let \(F:\calF\to\bbR\) be a continuous linear functional on a (possible infinite dimensional) separable Hilbert space \(\calF\).
Then there exists \(c\in\calF\) such that \(F(x)=\dotp{x}{c}\) for every \(x\in\calF\)An RKHS is a Hilbert space \(\calH\) of real-valued functions \(f:\bbR^d\to\bbR\) in which the sampling operation \(\calS_\bftau:\calH\to\bbR:f\mapsto f(\bftau)\) is continuous for every \(\bftau\in\bbR^d\).
In other words, for each \(\bftau\in\bbR^d\), there exists \(k_\bftau\in\calH\) s.t. \[ f(\bftau) = {\dotp{f}{k_\bftau}}_\calH\text{ for all } f\in\calH \]
The kernel of an RKHS is \[ k:\bbR^d\times\bbR^d\to\bbR:(\bft,\bftau)\mapsto k_{\bftau}(\bft) \] where \(k_\bftau\) is the element of \(\calH\) that defines the sampling at \(\bftau\).
A (separable) Hilbert space with orthobasis \(\set{\psi_n}_{n\geq 1}\) is an RKHS with kernel \(k(\bft,\bftau)=\sum_{n=1}^\infty\psi_n(\bftau)\psi_n(\bft)\) iff \(\forall \bftau\in\bbR^d\) \(\sum_{n=1}^\infty\abs{\psi_{n}(\tau)}^2<\infty\)
If \(\set{\phi_n}_{n\geq 1}\) is a Riesz basis for \(\calH\), we know that every \(x\in\calH\) can be written \[ x = \sum_{n\geq 1}\alpha_n\phi_n\textsf{ with } \alpha_n\eqdef\dotp{x}{\smash{\widetilde{\phi}_n}} \] where \(\set{\widetilde{\phi}_n}_{n\geq 1}\) is the dual basis.
A (separable) Hilbert space with Riesz basis \(\set{\phi_n}_{n\geq 1}\) is an RKHS with kernel \[ k(\bft,\bftau) =\sum_{n=1}^\infty \phi_n(\bftau)\widetilde{\phi}_n(\bft) \] iff \(\forall \bftau\in\bbR^d\) \(\sum_{n=1}^\infty\abs{\phi_{n}(\tau)}^2<\infty\)
Finite dimensional Hilbert space
Space of \(L\)th order polynomial splines on the real line
Remark
Regression problem: given \(n\) pairs \((\bfx_i,y_i)\in\bbR^d\times\bbR\), solve \[ \min_{f\in\calF}\sum_{i=1}^n\abs{y_i-f(\bfx_i)}^2+\lambda\norm[\calF]{f}^2 \]
If we restrict \(\calF\) to be an RKHS, the problem becomes \[ \min_{f\in\calF}\sum_{i=1}^n\abs{y_i-{\dotp{f}{x_i}}_{\calF}}^2+\lambda\norm[\calF]{f}^2 \]
where \(x_i\eqdef k_{\bfx_i}\) provides the mapping between \(\bbR^d\) and \(\calF\) \[ x_i:\bfR^d\to\bbR:\bft\mapsto k_{\bfx_i}(\bft) = k(\bfx_i,\bft) \]
The solution is given by \[ \widehat{f} = \sum_{i=1}^n \widehat{\alpha}_i x_i\textsf{ with }\widehat{\bfalpha}\eqdef (\bfK+\lambda\bfI)^{-1}\bfy \] and \(\bfK\eqdef[K_{i,j}]_{1\leq i,j\leq n}\) with \(K_{i,j}=\dotp{x_i}{x_j}\)
An inner product kernel is a mapping \(k:\bbR^d\times\bbR^d\to\bbR\) for which there exists a Hilbert space \(\calH\) and a mapping \(\Phi:\bbR^d\to\calH\) such that \[\forall \bfu,\bfv\in\bbR^d\quad k(\bfu,\bfv)=\langle\Phi(\bfu),\Phi(\bfv)\rangle_\calH\]
A function \(k:\bbR^d\times\bbR^d\to\bbR\) is an inner product kernel if and only if \(k\) is a positive semidefinite kernel.