SYMMETRIC MATRICES

DR. MATTHIEU R BLOCH

Wednesday October 27, 2021

LOGISTICS

Drop date: October 30, 2021

My office hours on Tuesdays

- 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- This was great!

Midterm 2:

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

Last time:

RKHS

Today:

- Final thoughts on RKHS
- Symmetric matrices: more linear algebra (*objective:* further understand leastsquare problems)

Reading: Romberg, lecture notes 10/11/12

Toddlers can do it!

LAST TIME: ARONSZJAN'S THEOREM

Definition. (Inner product kernel)

An *inner product kernel* is a mapping $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ for which there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathbb{R}^d
ightarrow \mathcal{H}$ such that

$$orall \mathbf{u}, \mathbf{v} \in \mathbb{R}^d \quad k(\mathbf{u}, \mathbf{v}) = \langle \Phi(\mathbf{u}), \Phi(\mathbf{v})
angle_{\mathcal{H}}$$

Definition. (Positive semidefinite kernel) A function $k: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}$ is a *positive semidefinite* kernel if

- k is symmetric, i.e., $k(\mathbf{u}, \mathbf{v}) = k(\mathbf{v}, \mathbf{u})$
- for all $\{\mathbf{x}_i\}_{i=1}^N$, the *Gram matrix* **K** is positive semidefinite, i.e.,

$$\mathbf{x}^\intercal \mathbf{K} \mathbf{x} \geq 0 ext{ with } \mathbf{K} = [K_{i,j}] ext{ and } K_{i,j} riangleq k(\mathbf{x})$$

Theorem.

A function $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is an inner product kernel if and only if k is a positive semidefinite kernel.

Sketch of proof. (1) Let le be an inner produck kernel (e.g., the kernel of an Rich
Then le is symmetric (by definition)
Let
$$\{x_i\}_{i=1}^n \in \mathbb{R}^d$$
, from the matrix $k = [k(x_i, x_i)]_{i,j}$
Let $\omega \in \mathbb{R}^n$ $\omega^T K \omega = \sum_{i=1}^n \sum_{j=1}^n \omega_i \omega_j \frac{k(x_i, x_j)}{\sqrt{q(x_i)}} \sqrt{q(x_j)} \frac{1}{\sqrt{q}(x_j)} \frac{1}{\sqrt{q}(x_j$

an RICHS)

jij

(2) Let
$$k = a$$
 SDP bernel
Define $\overline{\Phi}: \mathbb{R}^{d} \rightarrow \mathcal{W}: \underline{x} \mapsto k_{\underline{x}} \stackrel{a}{=} k(\underline{x}, \cdot)$
How is a function
Let $\mathcal{W}_{0} = \operatorname{Span} \{ \overline{\Phi}(\underline{x}) : \underline{x} \in \mathbb{R}^{d} \}$
Let $f_{x}g \in \mathcal{W}_{0}; \text{ Hen } f = \sum_{i=1}^{k} d_{i} \overline{\Phi}(x_{i}) \text{ and } g = \sum_{j=1}^{l} \beta_{j} \overline{\Phi}(x_{j})$
Define $\langle f_{i}g \rangle \stackrel{a}{=} \sum_{i=1}^{l} \sum_{j=1}^{l} d_{i} \beta_{j} \frac{k(x_{i}, x_{j})}{k(x_{i}, x_{j})}$
Note $\langle f_{i}g \rangle = \langle g_{i}f \rangle$ so the candidate inverpoduct is symmetric;
 $\overline{Fact} \cdot a$ symmetric blinean form schedes Gaucely-Schwartz : $\langle f_{i}g \rangle = b/c \langle f_{i}f \rangle = \sum_{i=1}^{l} d_{i} d_{j} k(x_{i}, x_{j}) = d^{T}K d \geqslant 0$
Nate $\forall f \in bb_{0} \quad \forall x \in \mathbb{R}^{d} \quad \langle f_{i}, h_{x} \rangle = \langle \sum_{i=1}^{n} d_{i} k_{x_{i}}, h_{x} \rangle = \sum_{i=1}^{n} d_{i} k_{x_{i}} \frac{1}{k_{x}} \frac{1}{k_{x}} = \sum_{i=1}^{n} d_{i} k_{x_{i}} \frac{1}{k_{x}} = \sum_{i=1}^{n} d_{i} k_{x_{i}} \frac{1}{k_{x}} = \sum_{i=1}^{n} d_{i} k_{x_{i}} \frac{1}{k_{x}} \frac{1}{k_{x}} = \sum_{i=1}^{n} d_{i} k_{x_{i}} \frac{1}{k_{x}} \frac{1$

. h (xi,x) = f(x) (reproducing pro

duy sequences in Hob (see notes)

EXAMPLES OF RKHS

Example. Regression using linear and quadratic functions in \(\bbR^d\)

$$T_{n} + roduce a mapping $\Psi: \mathbb{R}^{d} \to \mathbb{R}^{n}: \mathfrak{X} = \begin{pmatrix} \mathsf{X}_{1} \\ \mathsf{X}_{d} \end{pmatrix} \mapsto \Psi(\mathfrak{X}) = \begin{pmatrix} \mathsf{P}^{\mathsf{X}_{1}} \\ \mathsf{P}^{\mathsf{X}_{d}} \\ \mathsf{P}^{\mathsf{X}_{d} \\ \mathsf{P}^{$$$

= $1 + d + d + d (d-1) = \sqrt{d^2}$

Example. Regression using linear and quadratic functions in \(\bbR^d\) **Example.** Regression using Radial Basis Functions

 d_{2} $exp\left(-\frac{\|s\|_{e}^{2}}{z \sqrt{2}}\right)$ xhe ES bounded in IRd set } $K \beta d = \begin{pmatrix} d_1 \\ \vdots \\ d_2 \end{pmatrix} \beta = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_k \end{pmatrix}$

$$K_{k\ell} \stackrel{A}{=} \langle \varphi(\underline{s} - \underline{x}_{k}), \varphi(\underline{s} - \underline{y}_{\ell}) \rangle = \int \varphi(\underline{s} - \underline{x}_{k}) \varphi(\underline{s} - \underline{x}_{\ell}) d\underline{s}$$

$$= \left(\frac{1}{\sqrt{10^{2}}}\right)^{d} \int_{\underline{s} \in \mathbb{R}^{d}} \exp\left(-\frac{\|\underline{s} - \underline{x}_{\ell}\|\|_{2}^{2}}{2\sqrt{2}}\right) \exp\left(-\frac{\|\underline{s} - \underline{x}_{\ell}\|\|_{2}^{2}}{2\sqrt{2}}\right)$$

$$e_{x} \rho\left(-\frac{1}{2\sqrt{2}}\left(\|\underline{s} - \underline{x}_{\ell}\|\|^{2} + \|\underline{s} - \underline{x}_{\ell}\|\|_{2}^{2}\right)$$

$$e_{x} \rho\left(-\frac{1}{2\sqrt{2}}\left(\|\underline{s} - \underline{x}_{\ell}\|\|^{2} + \|\underline{s} - \underline{x}_{\ell}\|\|_{2}^{2}\right)$$
Note $\|\underline{s} - \underline{x}_{k}\|\|_{2}^{2} + \|\underline{s} - \underline{x}_{\ell}\|\|_{2}^{2} = \underline{s}^{T}\underline{s} - \underline{e}\,\underline{s}^{T}\underline{x}_{k} + \underline{x}_{k}^{T}\underline{x}_{k} + \underline{s}^{T}\underline{s} - \underline{e}\,\underline{s}^{T}\underline{x}_{\ell} + \underline{x}_{\ell}^{T}\underline{x}_{k} + \underline{s}^{T}\underline{s} - \underline{e}\,\underline{s}^{T}\underline{x}_{\ell} + \underline{x}_{\ell}^{T}\underline{x}_{k} + \underline{s}^{T}\underline{s} - \underline{e}\,\underline{s}^{T}\underline{x}_{\ell} + \underline{x}_{\ell}^{T}\underline{x}_{k} + \underline{s}^{T}\underline{s} - \underline{e}\,\underline{s}^{T}\underline{x}_{\ell} + \underline{x}_{\ell}^{T}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}^{T}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} + \underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell}\underline{x}_{\ell} +$

Example. Regression using linear and quadratic functions in \mathbb{R}^d **Example.** Regression using Radial Basis Functions

Examples of kernels

- Homogeneous polynomial kernel: $k(\mathbf{u},\mathbf{v})=(\mathbf{u}^{\intercal}\mathbf{v})^m$ with $m\in\mathbb{N}^*$
- Inhomogenous polynomial kernel: $k(\mathbf{u},\mathbf{v})=(\mathbf{u}^\intercal\mathbf{v}+c)^m$ with $c>0,m\in\mathbb{N}^*$
- Radial basis function (RBF) kernel: $k(\mathbf{u},\mathbf{v}) = \exp\left(-rac{\|\mathbf{u}-\mathbf{v}\|^2}{2\sigma^2}
 ight)$ with $\sigma^2 > 0$

$\in \mathbb{N}^*$

SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

This is a system of symmetric equations Ax = y with $A^{T} = A$

Ultimately we will talk about the non-symmetric/non square case

Definition.

A real-valued matrix **A** is symmetric if $\mathbf{A}^{\intercal} = \mathbf{A}$ A complex-valued matrix **A** is Hermitian if $\mathbf{A}^{\dagger} = \mathbf{A}$ (also written $\mathbf{A}^{H} = \mathbf{A}$)

Definition.

Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, if a vector $\mathbf{v} \in \mathbb{C}^n$ satisfies $\mathbf{Av} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue associated to the *eigenvector* **v**.

If λ is an eigenvalue, there are infinitely many eigenvectors associated to it

Definition.

Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, if a vector $\mathbf{v} \in \mathbb{C}^n$ satisfies $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue associated to the *eigenvector* **v**.

CHANGE OF BASIS

Consider the canonical basis $\{e_i\}_{i=1}^n$ for \mathbb{R}^n ; every vector can be viewed as a vector of coefficients $\{\alpha_i\}_{i=1}^n$,

$$\mathbf{x} = \sum_{i=1}^{n} lpha_i e_i = [lpha_1 \quad lpha_2 \quad \cdots \quad lpha_n]^{\mathsf{T}}$$

How do we find the representation of **x** in another basis $\{v_i\}_{i=1}^n$? Write $e_i = \sum_{j=1}^n \beta_{ij} v_j$ Regroup the coefficients

$$\mathbf{x} = \cdots + \left(\sum_{i=1}^n eta_{ij} lpha_i
ight) v_j + \cdots$$

In matrix form

$$\mathbf{x}_{\text{new}} = \begin{bmatrix} \beta_{11} & \beta_{21} & \cdots & \beta_{n1} \\ \beta_{12} & \beta_{22} & \cdots & \beta_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{1n} & \beta_{2n} & \cdots & \beta_{nn} \end{bmatrix} \mathbf{x}$$

SIMILARITY

A change of basis matrix **P** is full rank (basis vectors are linearly independent)

Any full rank matrix **P** can be viewed as a change of basis

 \mathbf{P}^{-1} takes you back to the original basis

Warning: the columns of **P** describe the *old* coordinates as a function of the *new* ones

Definition.

If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ then \mathbf{B} is similar to \mathbf{A} if there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$

Intuition: similar matrices are the same up to a change of basis

Definition.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n imes n}$ such that $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ with \mathbf{D} diagonal

Not all matrices are diagonalizable!

Lemma (Existence of eigenvector) Every complex matrix **A** has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.

Lemma (Schur triangularization lemma) Every matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is unitarily similar to an upper triangular matrix, i.e.,

$$\mathbf{A}=\mathbf{V}\boldsymbol{\Delta}\mathbf{V}^{\dagger}$$

with $oldsymbol{\Delta}$ upper triangular and $\mathbf{V}^{\dagger} = \mathbf{V}^{-1}$

Theorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.

