SYMMETRIC MATRICES

Dr. Matthieu R Bloch
Wednesday October 27, 2021

LOGISTICS

Drop date: October 30, 2021
My office hours on Tuesdays

- 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- This was great!

Midterm 2:

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

WHAT'S ON THE AGENDA FOR TODAY?

Last time:

- RKHS

Today:

- Final thoughts on RKHS
- Symmetric matrices: more linear algebra (objective: further understand leastsquare problems)

Reading: Romberg, lecture notes 10/11/12

Toddlers can do it!

LAST TIME: ARONSZJAN'S THEOREM

Definition. (Inner product kernel)
An inner product kernel is a mapping $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathbb{R}^{d} \rightarrow \mathcal{H}$ such that

$$
\forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{d} \quad k(\mathbf{u}, \mathbf{v})=\langle\Phi(\mathbf{u}), \Phi(\mathbf{v})\rangle_{\mathcal{H}}
$$

Definition. (Positive semidefinite kernel)
A function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a positive semidefinite kernel if

- k is symmetric, i.e., $k(\mathbf{u}, \mathbf{v})=k(\mathbf{v}, \mathbf{u})$
- for all $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$, the Gram matrix \mathbf{K} is positive semidefinite, i.e.,

$$
\mathbf{x}^{\top} \mathbf{K} \mathbf{x} \geq 0 \text { with } \mathbf{K}=\left[K_{i, j}\right] \text { and } K_{i, j} \triangleq k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

Theorem.
A function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an inner product kernel if and only if k is a positive semidefinite kernel.

Sketch of proof. (i) Let k be an inner product kernel (e.g., the kernel of an RKHS)
Then k rs symmetric (by definition)
Let $\left\{x_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{d}$, fam the matrix $k=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j}$
Let $\omega \in \mathbb{R}^{n}$

$$
\begin{aligned}
\omega^{\top} K_{\omega} & =\sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{i} \omega_{j} \underbrace{\left\langle\left(x_{i}, x_{j}\right)\right.} \\
& =\left\langle\sum_{i=1}^{\langle } \omega_{i} \Phi\left(x_{i}\right), \sum_{j=1}^{n} \omega_{j} \Phi \Phi\left(x_{j}\right)\right\rangle_{\psi} \\
& =\left\|\sum_{i=1}^{n} \omega_{i} x_{i} \Phi\left(x_{i}\right)\right\|_{j}^{2} \geqslant 0
\end{aligned}
$$

(2) Let k be a SDP kernel this is a function
Define $\Phi: \mathbb{R}^{d} \rightarrow \mathcal{H}: \underline{x} \longmapsto k_{\underline{x}} \Delta k(\underline{x},-)$
Let $f_{0}=\operatorname{span}\left\{\Phi(x): x \in \mathbb{R}^{d}\right\}$
Let $f_{\wedge} g \in b_{0}$; then $f=\sum_{i=1}^{k} \alpha_{i} \Phi\left(x_{i}\right)$ and $g=\sum_{j=1}^{l} \beta_{j} \Phi\left(x_{j}\right)$
Define $\widehat{\langle f \mid g\rangle} \triangleq \sum_{i=1}^{k} \sum_{j=1}^{e} \alpha_{i} \beta_{j} k\left(x_{i}, x_{j}\right)$
Note $\langle\tilde{f}, g\rangle=\left\langle\tilde{g_{1}} f\right\rangle$ so the canditate inner noduct is symmetric; it is also bilinear (by definition) Fact. a symmetric bilinear fam satisfies Cancely-Schwarz: $\left.\left\langle\widetilde{f_{1} g}\right\rangle \leq \widetilde{\left\langle\tilde{f_{1}} f\right.}\right\rangle \sqrt{\left.\widetilde{q}_{g} g\right\rangle}$

$$
b / c\left\langle\tilde{f_{1}} f\right\rangle=\sum_{i j} \alpha_{i} \alpha_{j} k\left(x_{i} x_{j}\right)=\alpha^{\top} k \alpha \geqslant 0
$$

Note $\left.\forall f \in b_{60} \quad \forall x \in \mathbb{R}^{d} \quad \widetilde{f_{1}} k_{x}\right\rangle=\left\langle\sum_{i=1}^{n} \alpha_{2} k_{x_{i}}, k_{x}\right\rangle=\sum_{i=1}^{n} \alpha_{c} k\left(x_{i}, x\right)=f(x) \quad$ (reproducing pro) Finally $|\tilde{f}(x)|=\left|\left\langle\tilde{f_{j}} k_{x}\right\rangle\right| \leq \sqrt{\left\langle f_{1} f\right\rangle} \sqrt{\left\langle k_{x} k_{x}\right\rangle},=\left[k_{n}(x, x)\right]^{1 / 2}$
Hence $\langle\tilde{f} \mid\rangle\rangle=0 \Rightarrow f=0$
Hence $\langle\tilde{f} f\rangle=0 \Rightarrow f=0$

Hence $\tilde{\langle }\rangle$ is a legrimate inner product.
$\mathrm{V}_{00}+\langle\boldsymbol{r}\rangle$ is a pere- Meat space.
We need to extend too to make it complete
Solution: $H=\left\{\right.$ ser of functions that are pointwie Cauchy limits of Candy y sequences in H_{0} \} (see notes)

EXAMPLES OF RKHS
|Example. Regression using linear and quadratic functions in $\backslash\left(\backslash b b R^{\wedge} d \backslash\right)$

$$
\begin{aligned}
& \text { Inhrodve a maping } \Psi: R^{d} \rightarrow \mathbb{R}^{n}: \underline{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
i_{d}
\end{array}\right) \longmapsto \Psi(x)=\left(\begin{array}{c}
1 \\
R_{1} x_{1} \\
r_{1}^{2} \times 2 \\
x_{1}^{2} \\
\vdots \\
x_{d_{d}} \\
\sqrt{2} x_{1} x_{2} \\
\vdots \\
\sqrt{2} x_{d-1} x_{d}
\end{array}\right) \in \mathbb{R}^{n} \quad n=1+d+d+\frac{d(d-1)}{2} \sim d^{2} \\
& \begin{array}{rl}
\forall x, y \in \mathbb{R}^{d}\langle\Psi(x), \Psi(y)\rangle_{\mathbb{R}^{n}}=1+2 \sum_{i=1}^{d} x_{i} y_{c}+\sum_{i=1}^{d} x_{i}^{2} y_{i}^{2} i_{i}^{2} & 2 \sum_{i} \sum_{j \neq c} x_{i} x_{j} y_{y} y_{j}=\left(1+\sum_{i=1}^{d} x_{i} y_{i}\right)^{2}=\underbrace{\left(1+\langle x, y\rangle_{\mathbb{R}}\right)^{2}}_{\text {hernd }} \\
h(x, y) \stackrel{s}{=}\left(1+\langle x, y\rangle_{1}\right.
\end{array}
\end{aligned}
$$

EXAMPLES OF RKHS
|Example. Regression using linear and quadratic functions in $\backslash\left(\backslash b b R^{\wedge} d \backslash\right)$
|Example. Regression using Radial Basis Functions
Consider the mapping $\Phi \cdot \mathbb{R}^{d} \rightarrow \widetilde{J}: \underline{x} \longmapsto \phi(\underline{s}-\underline{x})$ wi $\phi(\underline{s})=\left(\frac{1}{\sigma \sqrt{\pi}}\right)^{d / 2} \exp \left(-\frac{\|s\|_{2}^{2}}{2 \sigma^{2}}\right)$

Consider $\bar{k}^{\wedge}=\left\{\right.$ all functions of the form $\left.\sum_{k=1}^{K} \beta_{k} \phi\left(\underline{s}-x_{k}\right) f_{n} k \in \mathbb{N},\left\{\beta_{k}\right\},\left\{\underline{x} \underline{e}_{k}\right\}\right\}$
Let $f_{i} g \in F^{K}$, ie., $f(s)=\sum_{k=1}^{k} \beta_{h} \phi\left(\underline{s}-x_{h}\right)$ and $g(s)=\sum_{l=1}^{2} \alpha_{l} \phi\left(\underline{s}-\underline{y}_{e}\right)$

$$
\begin{aligned}
& k_{k l} \hat{s}\left\langle\phi\left(\underline{s}-x_{h}\right), \phi\left(\underline{s}-y_{l}\right)\right\rangle=\int_{\underline{s} \in \mathbb{R}^{d}} \phi\left(s-x_{k}\right) \phi\left(\underline{s}-x_{l}\right) d \underline{s} \\
& =\left(\frac{1}{\sigma \sqrt{\pi}}\right)^{d} \int_{\underline{s} \in \mathbb{R}^{d} \underbrace{\exp \left(-\frac{\left\|s-x_{k}\right\| \|_{2}^{2}}{2 \sigma^{2}}\right)} \underbrace{}_{\exp \left(-\frac{1}{2 \sigma^{2}}\left(\|-\frac{\|s-x e l\|_{2}^{2}}{2 \sigma^{2}}\right.\right.}) d \underline{s}+\|s-x e\|_{2}^{2}))})=\exp \left(-\frac{\left\|x_{h}-x_{e}\right\|_{2}^{2}}{4 \sigma^{2}}\right) \\
& \text { Note }\left\|_{s}-x_{k}\right\|_{2}^{2}+\left\|_{s}-x_{l}\right\|_{2}^{2}=s_{s}^{\top} \underline{s}-2 s^{\top} x_{k}+x_{h}^{\top} x_{k}+s_{s}^{\top}-2 s^{\top} x_{l}+x_{l}^{\top} x_{l}
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{2\left\|s-\left(x_{k}+x_{e}\right)\right\|_{2}^{2}}+\left\|x_{h}-x_{l}\right\|_{2}^{2} \\
& \text { Dor Bloch }
\end{aligned}
$$

EXAMPLES OF RKHS

|Example. Regression using linear and quadratic functions in \mathbb{R}^{d}
|Example. Regression using Radial Basis Functions

Examples of kernels

- Homogeneous polynomial kernel: $k(\mathbf{u}, \mathbf{v})=\left(\mathbf{u}^{\top} \mathbf{v}\right)^{m}$ with $m \in \mathbb{N}^{*}$
- Inhomogenous polynomial kernel: $k(\mathbf{u}, \mathbf{v})=\left(\mathbf{u}^{\top} \mathbf{v}+c\right)^{m}$ with $c>0, m \in \mathbb{N}^{*}$
- Radial basis function (RBF) kernel: $k(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{2 \sigma^{2}}\right)$ with $\sigma^{2}>0$

SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}=\mathbf{X}^{\top} \mathbf{y}$
This is a system of symmetric equations $\mathbf{A} \mathbf{x}=\mathbf{y}$ with $\mathbf{A}^{\top}=\mathbf{A}$

- Ultimately we will talk about the non-symmetric/non square case

Definition.
A real-valued matrix \mathbf{A} is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$ A complex-valued matrix \mathbf{A} is Hermitian if $\mathbf{A}^{\dagger}=\mathbf{A}$ (also written $\mathbf{A}^{H}=\mathbf{A}$)

Definition.

Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, if a vector $\mathbf{v} \in \mathbb{C}^{n}$ satisfies $\mathbf{A v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue associated to the eigenvector \mathbf{v}.

If λ is an eigenvalue, there are infinitely many eigenvectors associated to it

Definition.

Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, if a vector $\mathbf{v} \in \mathbb{C}^{n}$ satisfies $\mathbf{A v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue associated to the eigenvector \mathbf{v}.

CHANGE OF BASIS

Consider the canonical basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \mathbb{R}^{n}; every vector can be viewed as a vector of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right]^{\top}
$$

How do we find the representation of \mathbf{x} in another basis $\left\{v_{i}\right\}_{i=1}^{n}$? Write $e_{i}=\sum_{j=1}^{n} \beta_{i j} v_{j}$
Regroup the coefficients

$$
\mathbf{x}=\cdots+\left(\sum_{i=1}^{n} \beta_{i j} \alpha_{i}\right) v_{j}+\cdots
$$

In matrix form

$$
\mathbf{x}_{\text {new }}=\left[\begin{array}{cccc}
\beta_{11} & \beta_{21} & \cdots & \beta_{n 1} \\
\beta_{12} & \beta_{22} & \cdots & \beta_{n 2} \\
\vdots & \vdots & \vdots & \vdots \\
\beta_{1 n} & \beta_{2 n} & \cdots & \beta_{n n}
\end{array}\right] \mathbf{x}
$$

SIMILARITY

A change of basis matrix \mathbf{P} is full rank (basis vectors are linearly independent)
Any full rank matrix \mathbf{P} can be viewed as a change of basis
\mathbf{P}^{-1} takes you back to the original basis
Warning: the columns of \mathbf{P} describe the old coordinates as a function of the new ones

Definition.

If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ then \mathbf{B} is similar to \mathbf{A} if there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

Intuition: similar matrices are the same up to a change of basis
Definition.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}$ with \mathbf{D} diagonal

Not all matrices are diagonalizable!

SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix \mathbf{A} has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.
Lemma (Schur triangularization lemma) Every matrix $\mathbf{A}^{\in} \mathbb{R}^{n \times n}$ is unitarily similar to an upper triangular matrix, i.e.,

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Delta} \mathbf{V}^{\dagger}
$$

with $\boldsymbol{\Delta}$ upper triangular and $\mathbf{V}^{\dagger}=\mathbf{V}^{-1}$
|Theorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.

