SYMMETRIC MATRICES

DR. MATTHIEU R BLOCH

Monday, November 1, 2021



LOGISTICS

Grades

= Midterm 1 was long... future exams will be better calibrated
= | will curve to get GPA similar to past semesters

My office hours on Tuesdays

= 8am-9am on BlueJeans (https://bluejeans.com/205357142)
= Tomorrow (Tuesday November 02, 2021) will focus on Midterm 1 solution
= |’|| try to record the session

Midterm 2:

= Moved to Monday November 8, 2021 (gives you weekend to prepare)
= Coverage: everything since Midterm 1 (dont’ forget the fundamentals though), emphasis on regression


https://critique.gatech.edu/course?courseID=ECE%207750

WHAT’S ON THE AGENDA FOR TODAY?

Last time:
= Symmetric matrices: more linear algebra
m Objective: further understand least-square problems

Reading: lecture notes 12

Toddlers can do it!



SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations @ = XTy

This is a system of symmetric equations|Ax = y_lwith}AT = Al'




SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations XTX0 = XTy
This is a system of symmetric equations Ax = y with AT = A

= Ultimately we will talk about the non-symmetric/non square case

Definition.

_ ix Aj icif AT = - - (ace
A real-valued matrix A is symmetricif AT = A (asb-q&., ?pf A- ["’«»&]) . .
A complex-valued matrix A is Hermitian if AT = A (also written A¥ = A) Aﬁ-_@f) = (4 "")



SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations XTX0 = XTy
This is a system of symmetric equations Ax = ywith AT = A
= Ultimately we will talk about the non-symmetric/non square case
Definition.
Areal-valued matrix A is symmetricif AT = A
A complex-valued matrix A is Hermitian if AT = A (also written AH = A)

Definition.

Given a matrix A € C™*",if avector v € C" satisfies Av = Av forsome XA € C, then \is an eigenvalue
associated to the eigenvector v.

If Ais an eigenvalue, there are infinitely many eigenvectors associated to it
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SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations XTX0 = XTy
This is a system of symmetric equations Ax = ywith AT = A
= Ultimately we will talk about the non-symmetric/non square case
Definition.
Areal-valued matrix A is symmetricif AT = A
A complex-valued matrix A is Hermitian if AT = A (also written AH = A)

Definition.

Given a matrix A € C™*",if avector v € C" satisfies Av = Av forsome XA € C, then \is an eigenvalue
associated to the eigenvector v.

If Ais an eigenvalue, there are infinitely many eigenvectors associated to it
Définition.

vén amatfix A € """, ifavectorv € "\ satisfiessAv = AvTorsermne CAhen Ms amrergenvelue
associatéd to thegigenveetor



CHANGE OF BASIS

Consider the canonical basis {e; },._; for R™; every vector can be viewed as a vector of coefficients {a; }; ;,
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CHANGE OF BASIS

Consider the canonical basis {e; },._; for R™; every vector can be viewed as a vector of coefficients {a; }; ;,
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How do we find the representation of x in another basis {v; }._? Write\ei =i ﬁijv;-]




CHANGE OF BASIS

Consider the canonical basis {e; },._; for R™; every vector can be viewed as a vector of coefficients {a; }; ;,
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How do we find the representation of x in another basis {v; };_,? Write e; = >, Bi;v;

Regroup the coefficients




CHANGE OF BASIS

Consider the canonical basis {e; },._; for R™; every vector can be viewed as a vector of coefficients {a; }; ;,
n
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How do we find the representation of x in another basis {v; };_,? Write e; = D, Bi;v;

Regroup the coefficients
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SIMILARITY

A change of basis matrix P is full rank (basis vectors are linearly independent)

Any full rank matrix P can be viewed as a change of basis

P ! takes you back to the original basis

Warning: the columns of P describe the old coordinates as a function of the new ones
Definition.
If A, B € R™"*" then B is similar to A if there exists an invertible matrixﬁ € R™ "™ such that
B=P AP
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SIMILARITY

A change of basis matrix P is full rank (basis vectors are linearly independent)

Any full rank matrix P can be viewed as a change of basis

P ! takes you back to the original basis

Warning: the columns of P describe the old coordinates as a function of the new ones
Definition.

If A, B € R™" then B is similar to A if there exists an invertible matrix S € R™*" such that
B=P AP

Intuition: similar matrices are the same up to a change of basis
Definition.

g c R™*™is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix
c R™" suchthat D = P! AP with D diagonal
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SIMILARITY

A change of basis matrix P is full rank (basis vectors are linearly independent)

Any full rank matrix P can be viewed as a change of basis

P ! takes you back to the original basis

Warning: the columns of P describe the old coordinates as a function of the new ones
Definition.

If A, B € R™" then B is similar to A if there exists an invertible matrix S € R™*" such that
B=P AP

Intuition: similar matrices are the same up to a change of basis
Definition.

A € R™"™isdiagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix
S € R™" such that D = P! AP with D diagonal

Not all matrices are diagonalizable!
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SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix A has at least one complex eigenvector and every
real symmetrix matrix has real eigenvalues and at least one real eigenvector.
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SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix A has at least one complex eigenvector and every
real symmetrix matrix has real eigenvalues and at least one real eigenvector.

Lemma (Schur triangularization lemma) Every matrix A € C™*™ is unitarily similar to an upper triangular
matrix, i.e.,

A g YAl
A =VAVi. V )
( O\

with A upper triangularand VI = V1L,
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SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix A has at least one complex eigenvector and every
real symmetrix matrix has real eigenvalues and at least one real eigenvector.

Lemma (Schur triangularization lemma) Every matrix A € C™*™ is unitarily similar to an upper triangular
matrix, i.e.,

A =VAV!

with A upper triangularand VI = V1L,

ITheorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.

A‘\-‘"-A A:VAVJ‘- w) Ar Ja‘a{rml an‘l \/]-l/= T




Beft By ke Lo hriobancha, lomns
A- VAV . A" (vavh) varvt
Mow A=8" (VAV.A :A’r)
A- @) = At \: 6R
(&9 (X\) ( o\g,,)

)

v el




SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix A has at least one complex eigenvector and every
real symmetrix matrix has real eigenvalues and at least one real eigenvector.

Lemma (Schur triangularization lemma) Every matrix A € C™*" is unitarily similar to an upper triangular
matrix, i.e.,

A =VAV!

with A upper triangularand VI = V1L,

ITheorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.

Note thatif A = VDV then

n
A = Z )\z'VZ'V,:-r
1=1

How about real-valued matrices A € R™*"



SYMMETRIC POSITIVE DEFINITE MATRICES

Definition.
A symmetric matrice A is positive definite if it has positive eigenvalues, i.e.,Vi € {1,---,n} A; > 0.

A symmetric matrice A is positive semidefinite if it has nonnegative eigenvalues, i.e.,
Vie {1,---,n} X; >0.

Convention: Ay > Ay > -+ >\,

Variational form of extreme eigenvalues for symmetric positive definite matrices A

xTAx

Al = max X'Ax — max
xER: || x |l ;=1 x€R™ ||x||%
, - xTAx

Ay = min xTAx = min
xCR™: |1 x || 3=1 x€R" ||:x:||§

Theorem (Sylvester theorem)

For any analytic function f, we have



SYSTEM OF SYMMETRIC DEFINITE EQUATIONS

Consider the systemy = Ax with A symmetric positive definite
Proposition.

Let {v;} be the eigenvectors of A.

Assume that there exists some observation errory = Ax + e

= eisunknown
= we try to reconstruct X as X by applying A~}

Proposition.
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