# **SYMMETRIC MATRICES**

DR. MATTHIEU R BLOCH

Monday, November 1, 2021



## LOGISTICS

### Grades

- Midterm 1 was long... future exams will be better calibrated
- I will curve to get GPA similar to past semesters

### My office hours on Tuesdays

- 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- Tomorrow (Tuesday November 02, 2021) will focus on Midterm 1 solution
- I'll try to record the session

### Midterm 2:

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

## WHAT'S ON THE AGENDA FOR TODAY?

### Last time:

- Symmetric matrices: more linear algebra
- *Objective:* further understand least-square problems

### **Reading:** lecture notes 12



### Toddlers can do it!

Least square problems involved the normal equations  $\mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}} \mathbf{y}$ This is a system of symmetric equations  $\mathbf{A}\mathbf{x} = \mathbf{y}$  with  $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$ 

Least square problems involved the normal equations  $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ 

This is a system of symmetric equations Ax = y with  $A^{T} = A$ 

Ultimately we will talk about the non-symmetric/non square case

### **Definition**.

A real-valued matrix **A** is symmetric if  $\mathbf{A}^{\mathsf{T}} = \mathbf{A} \left( a_{ij} = a_{ji} \text{ for } A = [a_{ij}] \right)$ A complex-valued matrix  ${f A}$  is Hermitian if  ${f A}^\dagger = {f A}$  (also written  ${f A}^H = {f A}$ )

## $A^{+}_{-}(A^{T})^{*}_{-}(A^{*})^{T}$

Least square problems involved the normal equations  $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ 

This is a system of symmetric equations  $\mathbf{A}\mathbf{x} = \mathbf{y}$  with  $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$ 

Ultimately we will talk about the non-symmetric/non square case

### **Definition**.

A real-valued matrix  $\mathbf{A}$  is symmetric if  $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$ 

A complex-valued matrix **A** is Hermitian if  $\mathbf{A}^{\dagger} = \mathbf{A}$  (also written  $\mathbf{A}^{H} = \mathbf{A}$ )

### **Definition**.

Given a matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , if a vector  $\mathbf{v} \in \mathbb{C}^n$  satisfies  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$  for some  $\lambda \in \mathbb{C}$ , then  $\lambda$  is an eigenvalue associated to the *eigenvector* **v**.

If  $\lambda$  is an eigenvalue, there are infinitely many eigenvectors associated to it if  $A_v = dv$  then  $\forall z \in C$   $A(a_v) = \alpha A_v = d(a_v)$  dv is another eigenvector

Least square problems involved the normal equations  $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ 

This is a system of symmetric equations  $\mathbf{A}\mathbf{x} = \mathbf{y}$  with  $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$ 

Ultimately we will talk about the non-symmetric/non square case

**Definition**.

A real-valued matrix **A** is symmetric if  $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$ 

A complex-valued matrix **A** is Hermitian if  $\mathbf{A}^{\dagger} = \mathbf{A}$  (also written  $\mathbf{A}^{H} = \mathbf{A}$ )

### **Definition**.

Given a matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , if a vector  $\mathbf{v} \in \mathbb{C}^n$  satisfies  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$  for some  $\lambda \in \mathbb{C}$ , then  $\lambda$  is an eigenvalue associated to the *eigenvector* **v**.

If  $\lambda$  is an eigenvalue, there are infinitely many eigenvectors associated to it

Definition. Given a matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , if a vector  $\mathbf{v} \in \mathbb{C}^n$  satisfies  $\mathbf{Av} = \lambda \mathbf{v}$  for some  $\lambda \in \mathbb{C}$ , then  $\lambda$  is an eigenvalue associated to the eigenvector v

Consider the canonical basis  $\{e_i\}_{i=1}^n$  for  $\mathbb{R}^n$ ; every vector can be viewed as a vector of coefficients  $\{\alpha_i\}_{i=1}^n$ ,

$$\mathbf{x} = \sum_{i=1}^n lpha_i e_i = [lpha_1 \quad lpha_2 \quad \cdots \quad lpha_n]^{\intercal}$$

ei=

Consider the canonical basis  $\{e_i\}_{i=1}^n$  for  $\mathbb{R}^n$ ; every vector can be viewed as a vector of coefficients  $\{\alpha_i\}_{i=1}^n$ ,

$$\mathbf{x} = \sum_{i=1}^{n} lpha_i e_i = [lpha_1 \quad lpha_2 \quad \cdots \quad lpha_n]^{\mathsf{T}}$$

How do we find the representation of  ${f x}$  in another basis  $\{v_i\}_{i=1}^n$ ? Write  $e_i=\sum_{j=1}^neta_{ij}v_j$ 

Consider the canonical basis  $\{e_i\}_{i=1}^n$  for  $\mathbb{R}^n$ ; every vector can be viewed as a vector of coefficients  $\{\alpha_i\}_{i=1}^n$ ,

$$\mathbf{x} = \sum_{i=1}^{n} lpha_i e_i = [lpha_1 \quad lpha_2 \quad \cdots \quad lpha_n]^{\mathsf{T}}$$
 (

How do we find the representation of **x** in another basis  $\{v_i\}_{i=1}^n$ ? Write  $e_i = \sum_{j=1}^n \beta_{ij} v_j$ Regroup the coefficients

$$\mathbf{x} = \dots + \left(\sum_{i=1}^{n} \beta_{ij} \alpha_i\right) v_j + \dots$$
$$\mathbf{x} = \sum_{i=1}^{n} d_i e_i = \sum_{j=1}^{n} d_i \left(\sum_{j=1}^{n} \beta_{ij} v_j\right) = \sum_{j=1}^{n} d_j e_j = \sum_{j=1}^{$$

(\*)

= ( L pigde ) Vi

Consider the canonical basis  $\{e_i\}_{i=1}^n$  for  $\mathbb{R}^n$ ; every vector can be viewed as a vector of coefficients  $\{\alpha_i\}_{i=1}^n$ ,

$$\mathbf{x} = \sum_{i=1}^{n} lpha_i e_i = [lpha_1 \quad lpha_2 \quad \cdots \quad lpha_n]^{\mathsf{T}}$$

How do we find the representation of **x** in another basis  $\{v_i\}_{i=1}^n$ ? Write  $e_i = \sum_{j=1}^n eta_{ij} v_j$ Regroup the coefficients

In matrix form

$$\mathbf{x} = \dots + \left(\sum_{i=1}^{n} \beta_{ij} \alpha_i\right) v_j + \dots$$

$$\mathbf{x}_{new} = \begin{bmatrix} \beta_{11} & \beta_{21} & \dots & \beta_{n1} \\ \beta_{12} & \beta_{22} & \dots & \beta_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{1n} & \beta_{2n} & \dots & \beta_{nn} \end{bmatrix} \mathbf{x}$$



## SIMILARITY

A change of basis matrix **P** is full rank (basis vectors are linearly independent)

Any full rank matrix **P** can be viewed as a change of basis

 $\mathbf{P}^{-1}$  takes you back to the original basis

Warning: the columns of **P** describe the *old* coordinates as a function of the *new* ones

Definition.

If  $A, B \in \mathbb{R}^{n \times n}$  then B is similar to A if there exists an invertible matrix  $\mathbf{S} \in \mathbb{R}^{n \times n}$  such that  $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ 

## SIMILARITY

A change of basis matrix **P** is full rank (basis vectors are linearly independent)

Any full rank matrix **P** can be viewed as a change of basis

$${f P}^{-1}$$
 takes you back to the original basis

Warning: the columns of **P** describe the *old* coordinates as a function of the *new* ones

Definition.

If  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$  then  $\mathbf{B}$  is similar to  $\mathbf{A}$  if there exists an invertible matrix  $\mathbf{S} \in \mathbb{R}^{n \times n}$  such that  $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ 

*Intuition*: similar matrices are the same up to a change of basis

### Definition.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$  is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix  $\mathbf{S} \in \mathbb{R}^{n \times n}$  such that  $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$  with  $\mathbf{D}$  diagonal

$$D = \begin{pmatrix} d_{1}, 0 \\ 0, d_{n} \end{pmatrix} \quad \{d_{i}, j_{i=1}^{n} \in \mathbb{C}^{n} \\ 0, d_{n} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} d_{i}, x_{1} \\ \vdots \\ d_{n}, x_{n} \end{pmatrix}$$

## SIMILARITY

A change of basis matrix **P** is full rank (basis vectors are linearly independent)

Any full rank matrix **P** can be viewed as a change of basis

$${f P}^{-1}$$
 takes you back to the original basis

Warning: the columns of **P** describe the *old* coordinates as a function of the *new* ones

**Definition**.

If  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$  then  $\mathbf{B}$  is similar to  $\mathbf{A}$  if there exists an invertible matrix  $\mathbf{S} \in \mathbb{R}^{n \times n}$  such that  $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ 

*Intuition*: similar matrices are the same up to a change of basis

### **Definition.**

 $\mathbf{A} \in \mathbb{R}^{n \times n}$  is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix  $\mathbf{S} \in \mathbb{R}^{n imes n}$  such that  $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$  with  $\mathbf{D}$  diagonal

Not all matrices are diagonalizable! Example  $R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ 

Lemma (Existence of eigenvector) Every complex matrix **A** has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.

Proof: Let 
$$A \in C^{n \times n}$$
  
① Each:  $A \in C$  is an eigenvalue of  $A$  corresponding to  $\pm C \in C_{\pm}^{n}$  iff  $A$  is a root of  
Proof:  $A \times = A \times$  iff  $(A - A I) \times = 0$  iff  $A - A I$  has non zero harnel iff det  
② Each: every complex matrix  $A$  has at least one eigenvalue  
Proof: By the fundamential theorem of algebra (for complex polynomicals) applied to  
(at least) one complex root  $A \in C$   
By Each  $O$ , there exists an associated eigenvector  $x \in C^{n}$   
③ Let  $A \in \mathbb{R}^{n \times n}$   
and symmetric; let  $x$  be an eigenvector will eigenvalue  $A \in C$   
Then  $x^{T}Ax = x^{T}Ax = A \parallel x \parallel_{E}^{2}$  an  
 $x^{T}A^{T}x = (Ax)^{T}x = (Ax)^{T}x = A^{T} \parallel x \parallel_{E}^{2}$   
By backtorizing our Fact  $O$ , we can find a leal-valued eigenvector

 $p(E) \triangleq der (A-EI)$ +(A-bI)=0 iff d is a root of f

### p(E) = det (A-FI), Hune exists

nd h= It so that IER

Lemma (Existence of eigenvector) Every complex matrix **A** has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector. Lemma (Schur triangularization lemma) Every matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$  is unitarily similar to an upper triangular matrix, i.e.,

$$\mathbf{A} = \mathbf{V} \mathbf{\Delta} \mathbf{V}^{\dagger} = \vee \begin{pmatrix} \mathbf{A} & \mathbf{*} \\ \mathbf{O} & \mathbf{A} \end{pmatrix}$$

with  $\boldsymbol{\Delta}$  upper triangular and  $\mathbf{V}^{\dagger} = \mathbf{V}^{-1}$ .



Proof: Let 
$$A \in C^{n\times n}$$
; we know  $\exists$  eigenvalue  $d_1$ ,  $w_1$  eigenvector  $v_1$  (non-zero)  
 $V_1 = \begin{bmatrix} v_1 & U_1 \end{bmatrix} \quad U \in C^{n\times n-1}$  so that  $U_1^+U_1 = I$  and  $U_1^+v_1 = O$   
Hence  $AV_1 = A \begin{bmatrix} v_1 & U_1 \end{bmatrix} = \begin{bmatrix} A_1v_1 & AU_1 \end{bmatrix}$  and  $V_1^+AV_1 = \begin{bmatrix} -v_1^+ \\ U_1^+ \end{bmatrix} \begin{bmatrix} A_1v_1 & AU_1 \end{bmatrix}$   
Assume we can mark  $A \in C^{n\times n}$  as  $A_p = \begin{pmatrix} \Delta p & W_p \\ O & M_p \end{pmatrix}$  with  $p \in \mathbb{E}[1;n-1]$   
Let  $v_{pn}$  be an eigenvector (non-zero) of  $M_p$  with eigenvalue  $A_{p+1}$  (assume whog there  
Construct  $Z_{p+1} = \begin{bmatrix} v_{p+1}^+ & U_{p+1} \end{bmatrix}$  althour much  $(Z_{p+1}^+ = Z_{p+1}^{-1})$ ; Set  $V_{p+1} \stackrel{a}{=} \begin{bmatrix} T_{p+1} & A_p & V_{p+1} = \begin{bmatrix} \Delta p & W_p & Z_{p+1} \\ O & [A_{p+1}v_{p+1} & M_p & U_{p+1}] \end{bmatrix}$  and  $V_{p+1}^+ A_p V_{p+1} = \begin{bmatrix} \Delta p & W_p & Z_{p+1} \\ O & [A_{p+1}v_{p+1} & M_p & U_{p+1}] \end{bmatrix}$ 



Finally 
$$A_{1} = V_{1}^{\dagger} A V_{1}$$
  
 $A_{2} = V_{2}^{\dagger} A_{1} V_{2} = V_{2}^{\dagger} V_{1}^{\dagger} A V_{1} V_{2}$   
 $\vdots$   
 $A_{n} = V_{n}^{\dagger} - \cdots + V_{1}^{\dagger} A V_{1} - \cdots + V_{n} = \Delta$   
 $A_{n} = V_{n}^{\dagger} - \cdots + V_{n}^{\dagger} A V_{1} - \cdots + V_{n} = \Delta$   
So that  $A = V \Delta V^{\dagger}$ 



Lemma (Existence of eigenvector) Every complex matrix **A** has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector. Lemma (Schur triangularization lemma) Every matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$  is unitarily similar to an upper triangular matrix, i.e.,

$$\mathbf{A} = \mathbf{V} \mathbf{\Delta} \mathbf{V}^{\dagger}$$

with  $\boldsymbol{\Delta}$  upper triangular and  $\mathbf{V}^{\dagger} = \mathbf{V}^{-1}$ .

Theorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.

$$A^+ = A$$
  $A = V \Lambda V$ 

 $I^+$  w A diagonal and  $V^+V = I$ 

Proof: By the Shor triangularization lemma  

$$A = V \Delta V^{\dagger} = A^{\dagger} = (V \Delta V^{\dagger})^{\dagger} = V \Delta^{\dagger} V^{\dagger}$$
Hence  $\Delta = \Delta^{\dagger} (V^{\dagger} A V = \Delta = \Delta^{\dagger})$   

$$\Delta = \begin{pmatrix} \langle B \rangle \\ 0 \end{pmatrix} = \Delta^{\dagger} \begin{pmatrix} \langle A \rangle \\ A \rangle \end{pmatrix} = \begin{pmatrix} \langle A \rangle \\ 0 \end{pmatrix} = \begin{pmatrix} \langle A \rangle \\ 0 \end{pmatrix} \lambda_{i} \in \mathbb{R}$$

4

Lemma (Existence of eigenvector) Every complex matrix **A** has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector. Lemma (Schur triangularization lemma) Every matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$  is unitarily similar to an upper triangular matrix, i.e.,

$$\mathbf{A}=\mathbf{V}\boldsymbol{\Delta}\mathbf{V}^{\dagger}$$

with  $\boldsymbol{\Delta}$  upper triangular and  $\mathbf{V}^{\dagger} = \mathbf{V}^{-1}$ .

**Theorem (Spectral theorem)** Every hermitian matrix is unitarily similar to a real-valued diagonal matrix. Note that if  $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{\dagger}$  then

$$\mathbf{A} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^\dagger$$

How about real-valued matrices  $\mathbf{A} \in \mathbb{R}^{n imes n}$ 

### Definition.

A symmetric matrice **A** is positive definite if it has positive eigenvalues, i.e.,  $\forall i \in \{1, \dots, n\} \mid \lambda_i > 0$ .

A symmetric matrice  $\mathbf{A}$  is positive semidefinite if it has nonnegative eigenvalues, i.e.,  $orall i \in \{1, \cdots, n\} \quad \lambda_i \geq 0.$ 

Convention:  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 

Variational form of extreme eigenvalues for symmetric positive definite matrices A

$$egin{aligned} \lambda_1 &= \max_{\mathbf{x} \in \mathbb{R}^n: \, \|\mathbf{x}\|_2 = 1} \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} = \max_{\mathbf{x} \in \mathbb{R}^n} rac{\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}}{\|\|\mathbf{x}\|\|_2^2} \ \lambda_n &= \min_{\mathbf{x} \in \mathbb{R}^n: \, \|\mathbf{x}\|_2 = 1} \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} = \min_{\mathbf{x} \in \mathbb{R}^n} rac{\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}}{\|\|\mathbf{x}\|\|_2^2} \end{aligned}$$

**Theorem (Sylvester theorem)** 

For any analytic function f, we have

$$f(\mathbf{A}) = \sum_{i=1}^n f(\lambda_i) \mathbf{v}_i \mathbf{v}_i^{\intercal}$$

## SYSTEM OF SYMMETRIC DEFINITE EQUATIONS

Consider the system  $\mathbf{y} = \mathbf{A}\mathbf{x}$  with  $\mathbf{A}$  symmetric positive definite

**Proposition.** 

Let  $\{\mathbf{v}_i\}$  be the eigenvectors of **A**.

 $\mathbf{x} = \sum_{i=1}^n rac{1}{\lambda_i} \langle \mathbf{y}, \mathbf{v}_i 
angle \mathbf{v}_i$ 

Assume that there exists some observation error  $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ 

- e is unknown
- we try to reconstruct  $\mathbf{x}$  as  $\mathbf{\widetilde{x}}$  by applying  $\mathbf{A}^{-1}$

**Proposition.** 

$$rac{1}{\lambda_1}^2 \|\mathbf{e}\|_2^2 \leq \|\mathbf{x}- ilde{\mathbf{x}}\|_2 \leq rac{1}{\lambda_n}^2 \|\mathbf{e}\|_2^2.$$