SYMMETRIC MATRICES

Dr. Matthieu R Bloch
Monday, November 1, 2021

LOGISTICS

Grades

- Midterm 1 was long. . . future exams will be better calibrated
- I will curve to get GPA similar to past semesters

My office hours on Tuesdays

- 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- Tomorrow (Tuesday November 02, 2021) will focus on Midterm 1 solution
- I'll try to record the session

Midterm 2:

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

WHAT'S ON THE AGENDA FOR TODAY?

Last time:

- Symmetric matrices: more linear algebra
- Objective: further understand least-square problems

Reading: lecture notes 12

Toddlers can do it!

SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}=\mathbf{X}^{\top} \mathbf{y}$
This is a system of symmetric equations $\mathbf{A x = \mathbf { y }}$ with $\mathbf{A}^{\top}=\mathbf{A}$

SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}=\mathbf{X}^{\top} \mathbf{y}$
This is a system of symmetric equations $\mathbf{A x}=\mathbf{y}$ with $\mathbf{A}^{\top}=\mathbf{A}$

- Ultimately we will talk about the non-symmetric/non square case

Definition.

A real-valued matrix \mathbf{A} is symmetric if $\mathbf{A}^{\top}=\mathbf{A} \quad\left(a_{i j}=a_{j v}\right.$ for $\left.\mathbf{A}=\left[a_{i j}\right]\right)$
A complex-valued matrix \mathbf{A} is Hermitian if $\mathbf{A}^{\dagger}=\mathbf{A}$ (also written $\mathbf{A}^{H}=\mathbf{A}$)

SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}=\mathbf{X}^{\top} \mathbf{y}$
This is a system of symmetric equations $\mathbf{A x}=\mathbf{y}$ with $\mathbf{A}^{\top}=\mathbf{A}$

- Ultimately we will talk about the non-symmetric/non square case

Definition.

A real-valued matrix \mathbf{A} is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$
A complex-valued matrix \mathbf{A} is Hermitian if $\mathbf{A}^{\dagger}=\mathbf{A}$ (also written $\mathbf{A}^{H}=\mathbf{A}$)

Definition.

Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, if a vector $\mathbf{v} \in \mathbb{C}^{n}$ satisfies $\mathbf{A v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue associated to the eigenvector \mathbf{v}.

If λ is an eigenvalue, there are infinitely many eigenvectors associated to it

$$
\begin{aligned}
& \text { are infinitely many eigenvectors associated to it } \\
& \text { if } A_{v}=\lambda v \quad \text { then } \forall \alpha \in \mathbb{C} \quad A(\alpha v)=\alpha A v=\alpha d v=d(\alpha v) \quad \alpha v \text { is another eigenvedre }
\end{aligned}
$$

SYSTEMS OF SYMMETRIC EQUATIONS

Least square problems involved the normal equations $\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}=\mathbf{X}^{\top} \mathbf{y}$
This is a system of symmetric equations $\mathbf{A x}=\mathbf{y}$ with $\mathbf{A}^{\top}=\mathbf{A}$

- Ultimately we will talk about the non-symmetric/non square case

Definition.

A real-valued matrix \mathbf{A} is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$
A complex-valued matrix \mathbf{A} is Hermitian if $\mathbf{A}^{\dagger}=\mathbf{A}$ (also written $\mathbf{A}^{H}=\mathbf{A}$)

Definition.

Given a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, if a vector $\mathbf{v} \in \mathbb{C}^{n}$ satisfies $\mathbf{A v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue associated to the eigenvector \mathbf{v}.

If λ is an eigenvalue, there are infinitely many eigenvectors associated to it
D\&finition.

CHANGE OF BASIS

Consider the canonical basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \mathbb{R}^{n}; every vector can be viewed as a vector of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right]^{\top}
$$

CHANGE OF BASIS

Consider the canonical basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \mathbb{R}^{n}; every vector can be viewed as a vector of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right]^{\top}
$$

How do we find the representation of \mathbf{x} in another basis $\left\{v_{i}\right\}_{i=1}^{n}$? Write $e_{i}=\sum_{j=1}^{n} \beta_{i j} v_{j}$

CHANGE OF BASIS

Consider the canonical basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \mathbb{R}^{n}; every vector can be viewed as a vector of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \tag{*}
\end{array}\right]^{\top}
$$

How do we find the representation of \mathbf{x} in another basis $\left\{v_{i}\right\}_{i=1}^{n}$? Write $e_{i}=\sum_{j=1}^{n} \beta_{i j} v_{j}$
Regroup the coefficients

$$
\begin{aligned}
& \mathbf{x}=\cdots+\left(\sum_{i=1}^{n} \beta_{i j} \alpha_{i}\right) v_{j}+\cdots \\
& x=\sum_{i=1}^{n} \alpha_{i} e_{i}=\sum_{i=1}^{n} \alpha_{i}\left(\sum_{j=1}^{n} \beta_{i j} v_{j}\right)=\sum_{j=1}^{n} \underbrace{\left(\sum_{i=1}^{n} \beta_{i j} \alpha_{i}\right.}_{i=1}) v_{i} q_{i}
\end{aligned}
$$

CHANGE OF BASIS

Consider the canonical basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \mathbb{R}^{n}; every vector can be viewed as a vector of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right]^{\top}
$$

How do we find the representation of \mathbf{x} in another basis $\left\{v_{i}\right\}_{i=1}^{n}$? Write $e_{i}=\sum_{j=1}^{n} \beta_{i j} v_{j}$
Regroup the coefficients

$$
\begin{aligned}
& \mathbf{x}=\cdots+\underbrace{\left(\sum_{i=1}^{n} \beta_{i j} \alpha_{i}\right)} v_{j}+\cdots \\
& \mathbf{x}_{\text {new }}=\left[\begin{array}{cccc}
e_{1} & e_{2} & & e_{n} \\
\downarrow & \downarrow & \cdots & \downarrow \\
\underbrace{\beta_{11}}_{p} & \beta_{21} & \cdots & \beta_{n 1} \\
\beta_{12} & \beta_{22} & \cdots & \beta_{n 2} \\
\vdots & \vdots & \vdots & \vdots \\
\beta_{1 n} & \beta_{2 n} & \cdots & \beta_{n n}
\end{array}\right] \mathbf{x} \quad\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
\end{aligned}
$$

In matrix form

SIMILARITY

A change of basis matrix \mathbf{P} is full rank (basis vectors are linearly independent)
Any full rank matrix \mathbf{P} can be viewed as a change of basis
\mathbf{P}^{-1} takes you back to the original basis
Warning: the columns of \mathbf{P} describe the old coordinates as a function of the new ones

Definition.

If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ then \mathbf{B} is similar to \mathbf{A} if there exists an invertible matrix $\boldsymbol{\mathcal { P }} \in \mathbb{R}^{n \times n}$ such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

Ne : $\forall x \in R^{n} \quad B_{x}=P^{-1} A \underbrace{P_{x}}_{x}$
Changing basis of x

SIMILARITY

A change of basis matrix \mathbf{P} is full rank (basis vectors are linearly independent)
Any full rank matrix \mathbf{P} can be viewed as a change of basis
\mathbf{P}^{-1} takes you back to the original basis
Warning: the columns of \mathbf{P} describe the old coordinates as a function of the new ones

Definition.

If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ then \mathbf{B} is similar to \mathbf{A} if there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

Intuition: similar matrices are the same up to a change of basis
Definition.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix
$\stackrel{\mathbb{S}}{\mathbf{S}} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ with \mathbf{D} diagonal

$$
D=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & 0 \\
0 & d_{n}
\end{array}\right) \quad\left\{d_{i}\right\}_{i=1}^{n} \in \mathbb{C}^{n}
$$

SIMILARITY

A change of basis matrix \mathbf{P} is full rank (basis vectors are linearly independent)
Any full rank matrix \mathbf{P} can be viewed as a change of basis
\mathbf{P}^{-1} takes you back to the original basis
Warning: the columns of \mathbf{P} describe the old coordinates as a function of the new ones

Definition.

If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ then \mathbf{B} is similar to \mathbf{A} if there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

Intuition: similar matrices are the same up to a change of basis
Definition.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ with \mathbf{D} diagonal

Not all matrices are diagonalizable!

SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix \mathbf{A} has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.

Proof: Let $A \in C^{n \times n}$
(1) Fact: $\lambda \in C$ is an eigenvalue of A corresponding to $\pm \in 4_{*}^{n}$ \&f d is a rodr of $p(t) \triangleq \operatorname{det}(A-E I)$

Poof: $A_{x}=\lambda_{x}$ if $(A-\lambda I)_{x}=0$ if A-dI has won secco charnel iff $\operatorname{det}(A-b I)=0$ if d is a rod of of
(2) Fact: every complex matrix A has at least one eigenelve

Proof By the fundamental theorem of algebra (fa complex polynomials) applied to $p(t) \triangleq \operatorname{der}(A-t I)$, then exists (at least) one complex root $d \in \mathcal{C}$
By Fact (1), then exists an associated eigavectan $\underline{x} \in \mathbb{C}^{n}$
(3) Let $A \in \mathbb{R}^{n \times n}$ and symmetric; let x be an eigenvector wi erganvalve $d \in \mathbb{C}$

Then $x^{+} A_{x}=x^{+} d x=\lambda\|x\|_{e}^{2} \quad$ and $d=\lambda^{+}$so that $\lambda \in \mathbb{R}$

$$
\left.x^{+} A_{x}^{\prime \prime} x=(A x)^{+} x=\left(\lambda_{x}\right)\right)^{+} x=d^{+}\|x\|_{2}^{2}
$$

By backtraing or Fact (1), we can fund a veal-valued essen neectes

SPECTRAL THEOREM

Lemma (Existence of eigenvector) Every complex matrix \mathbf{A} has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.
Lemma (Schur triangularization lemma) Every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitarily similar to an upper triangular matrix, i.e.,

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Delta} \mathbf{V}^{\dagger}=V\left(\begin{array}{ccc}
\lambda_{1} & * \\
0 & d_{n}
\end{array}\right) V^{+}
$$

with $\boldsymbol{\Delta}$ upper triangular and $\mathbf{V}^{\dagger}=\mathbf{V}^{-1}$.

Proof: Let $A \in \mathbb{C}^{\text {nan }}$; we know \exists eigenvalue d_{1} wi eigenvector v (non-zero)
$V_{1}=\left[\begin{array}{ll}v_{1} & U_{1}\end{array}\right] \quad U_{1} \in \mathbb{C}^{n \times n-1}$ so that $U_{1}^{+} U_{1}=I$ and $U_{1}^{+} v_{1}=0$; assume wog that $\left\|_{1}\right\|_{1}=1$
Hence $A V_{1}=A\left[\begin{array}{ll}v_{2} & U_{1}\end{array}\right]=\left[\begin{array}{ll}d_{1} v_{1} & A U_{2}\end{array}\right]$ and $V_{1}^{+} A V_{1}=\left[\begin{array}{c}-v_{1}^{+} \\ U_{1}^{+}\end{array}\right]\left[\begin{array}{ll}d_{1} v_{1} & A U_{1}\end{array}\right]=\left[\begin{array}{cc}d_{1} & \\ 0 & V_{1}^{+} A U_{1} \\ 1 & \end{array}\right]$
Assume we can wite $A \in \mathbb{C}^{n \times n}$ as $\quad A_{p}=\left(\begin{array}{cc}\Delta_{p} & W_{p} \\ 0 & M_{p}\end{array}\right) \quad$ w/ $p \in \llbracket 1, n-1 \rrbracket{ }_{p \times n-p}^{W_{p}, M_{p} \text { arbitrary }}$
Let v_{p+1} be an ergenvected (nan-zero) of M_{f} wi eigenvalue $\lambda_{\rho+1}$ (assume wog $H_{\text {tat }}\left\|v_{p+1}\right\|=1$) Construct $z_{p+1}=\left[\begin{array}{ll}v_{p+1} & U_{p+1} \\ \hline\end{array}\right]$ athonamal $\left(z_{p m}^{+}=z_{p+1}^{-1}\right)$; Set $V_{p+1} \triangleq\left[\begin{array}{ll} & I_{p} 0\end{array}\right]$ pap

$$
\text { Then } A_{p} V_{p+1}=\left[\begin{array}{cll}
\Delta p & W_{p} Z_{p+1} \\
0 & {\left[\begin{array}{ll}
\lambda_{p+1} v_{p+1} & M_{p} U_{p+1}
\end{array}\right] \text { and } V_{p+1}^{+} A_{p} V_{p+1}=\left[\begin{array}{cc}
0 & z_{p+1}
\end{array}\right] n-p \times n-x_{p}} \\
\left.\begin{array}{cc}
\Delta_{p} & W_{p} \\
0 & z_{p+1} \\
0 & \lambda_{p+1} \\
0 & z_{p+1}^{+} \Pi_{p} U_{p+1}
\end{array}\right]
\end{array}\right]
$$

Fhadly

$$
\begin{gathered}
A_{1}=V_{1}^{+} A V_{1} \\
A_{2}=V_{2}^{+} A_{1} V_{2}=V_{2}^{+} V_{1}^{+} A V_{1} V_{2} \\
\vdots \\
A_{n}=\underbrace{V_{n}^{+} \ldots V_{1}^{+}}_{\Delta V_{n}^{+}} A \underbrace{V_{1} \ldots V_{n}}_{\Delta V}=\Delta
\end{gathered}
$$

So that $A=V \Delta V^{+}$

SPECTRAL THEOREM

|Lemma (Existence of eigenvector) Every complex matrix \mathbf{A} has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.
Lemma (Schur triangularization lemma) Every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitarily similar to an upper triangular matrix, ie.,

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Delta} \mathbf{V}^{\dagger}
$$

with $\boldsymbol{\Delta}$ upper triangular and $\mathbf{V}^{\dagger}=\mathbf{V}^{-1}$.
|Theorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.

$$
A^{+}=A \quad A=V A V^{+} w \Delta \text { diagonal and } V^{+} V=I
$$

Proff: By the Shor trianyulanization lemma

$$
A=V \Delta V^{+}=A^{+}=\left(V \Delta V^{+}\right)^{+}=V \Delta^{+} V^{+}
$$

Hence $\Delta=\Delta^{+} \quad\left(V^{+} A V=\Delta=\Delta^{+}\right)$

$$
\Delta=\binom{\searrow_{0}}{0}_{0}=\Delta^{+}\binom{0}{k}=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & \lambda_{n}
\end{array}\right) \quad d_{i} \in \mathbb{R}
$$

SPECTRAL THEOREM

|Lemma (Existence of eigenvector) Every complex matrix \mathbf{A} has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.
Lemma (Schur triangularization lemma) Every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitarily similar to an upper triangular matrix, i.e.,

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Delta} \mathbf{V}^{\dagger}
$$

with $\boldsymbol{\Delta}$ upper triangular and $\mathbf{V}^{\dagger}=\mathbf{V}^{-1}$.
|Theorem (Spectral theorem) Every hermitian matrix is unitarily similar to a real-valued diagonal matrix. Note that if $\mathbf{A}=\mathbf{V D V}^{\dagger}$ then

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\dagger}
$$

How about real-valued matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$

SYMMETRIC POSITIVE DEFINITE MATRICES

Definition.

A symmetric matrice \mathbf{A} is positive definite if it has positive eigenvalues, i.e., $\forall i \in\{1, \cdots, n\} \quad \lambda_{i}>0$.
A symmetric matrice \mathbf{A} is positive semidefinite if it has nonnegative eigenvalues, i.e., $\forall i \in\{1, \cdots, n\} \quad \lambda_{i} \geq 0$.

Convention: $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$
Variational form of extreme eigenvalues for symmetric positive definite matrices \mathbf{A}

$$
\begin{aligned}
& \lambda_{1}=\max _{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{2}=1} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\max _{\mathbf{x} \in \mathbb{R}^{n}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|_{2}^{2}} \\
& \lambda_{n}=\min _{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{2}=1} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|_{2}^{2}}
\end{aligned}
$$

|Theorem (Sylvester theorem)
For any analytic function f, we have

$$
f(\mathbf{A})=\sum_{i=1}^{n} f\left(\lambda_{i}\right) \mathbf{v}_{i} \mathbf{v}_{i}^{\top}
$$

SYSTEM OF SYMMETRIC DEFINITE EQUATIONS

Consider the system $\mathbf{y}=\mathbf{A x}$ with \mathbf{A} symmetric positive definite
Proposition.
Let $\left\{\mathbf{v}_{i}\right\}$ be the eigenvectors of \mathbf{A}.

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}}\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}
$$

Assume that there exists some observation error $\mathbf{y}=\mathbf{A x}+\mathbf{e}$

- e is unknown
- we try to reconstruct \mathbf{x} as $\widetilde{\mathbf{x}}$ by applying \mathbf{A}^{-1}

Proposition.

$$
{\frac{1}{\lambda_{1}}}^{2}\|\mathbf{e}\|_{2}^{2} \leq\|\mathbf{x}-\tilde{\mathbf{x}}\|_{2} \leq{\frac{1}{\lambda_{n}}}^{2}\|\mathbf{e}\|_{2}^{2}
$$

