SINGULAR VALUE DECOMPOSITION

Dr. Matthieu R Bloch
Monday, November 15, 2021

LOGISTICS

General announcements

- Assignment 6 to be posted... (grading traffic jam)
- 7 lectures left!

Assignment 5 and Midterm 2:

- Grading starting, we'll keep you posted

WHAT'S ON THE AGENDA FOR TODAY?

Last time:

- Singular value decomposition

Today

- Application to solving least squares

Reading: lecture notes 13/14

Toddlers can do it!

SINGULAR VALUE DECOMPOSITION

What happens for non-square matrices?
Theorem (Singular value decomposition)
Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\mathbf{A})=r$. Then $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ where

- $\mathbf{U} \in \mathbb{R}^{m \times r}$ such that $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{r}$ (orthonormal columns) ($U U^{\top} \neq I$)
- $\mathbf{V} \in \mathbb{R}^{n \times r}$ such that $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}_{r}$ (orthonormal columns) $\quad\left(V V^{\top} \neq I\right)$
 $v_{i}^{\top} v_{j}=0 \quad U_{i}^{\top} U_{i}=1$
- $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries

$$
\boldsymbol{\Sigma} \triangleq\left[\begin{array}{cccc}
\sigma_{1} & 0 & 0 & \cdots \\
0 & \sigma_{2} & 0 & \cdots \\
\vdots & & \ddots & \\
0 & \cdots & \cdots & \sigma_{r}
\end{array}\right]
$$

and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r} \geq 0$. The σ_{i} are called the singular values

We say that \mathbf{A} is full rank is $r=\min (m, n)$

$$
\text { We can write } A=\sum_{i=1}^{r} \sigma_{i} \underline{U_{i} v_{i}^{\top}}
$$

We can write $\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$

Hene $U\left(U_{1}^{\top} A V_{1}\right) V_{1}^{\top}=\left(U_{1} U_{1}^{\top}\right) A\left(V_{1} V_{1}^{\top}\right)=A=U_{1} \Sigma_{1} V_{1}^{\top}$

$$
\begin{aligned}
& =U \sum V^{\top} \quad w \quad \Sigma=\left[\begin{array}{ccc}
\sqrt{d} & & 0 \\
0 & \ddots & \\
0 & \sqrt{d r}
\end{array}\right]
\end{aligned}
$$

The rectus $\{u\}_{i}^{r}=1$ fum a basis for the column spas of A
Check: Let's consider the span of $\left\{v_{c} l_{i=1}^{r}\right.$; mote that $\forall c \in \llbracket j_{j r \rrbracket} \nu_{i}=\frac{1}{\sqrt{d_{c}}} A v_{i} \in \operatorname{cd}(A)$ so that span $\left\{v_{i}\right\}_{c}^{r}=C \operatorname{Col}(A)$ By dimension cossideartias $\operatorname{dim}\left(\right.$ span $\left.\left\{v_{i}\right\}_{i=1}^{r}\right)=r=\operatorname{ravk}(A)=\operatorname{den}(\operatorname{cod}(A))$ so that $\operatorname{span}\left\{v_{i}\right\}_{i=1}^{r}=\operatorname{Col}(A)$
Let $\left\{4 S_{i=r+1}^{m}\right.$ be an athdobest of $\operatorname{Ken}\left(A^{\top}\right)$, recall that $\operatorname{Ker}\left(A^{\top}\right)=\operatorname{Col}_{0}(A)^{\perp} \quad$ (check using definition + dimension)
Hence $\left\{u_{i}\right\}_{i=1}^{m}$ fam an orchocoass for \mathbb{R}^{m}
Recall: $V=\left[\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 & y_{r}\end{array}\right] \quad U=\left[\begin{array}{cc}1 & 1 \\ 4 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]$
Note $\quad V^{\top} V=I \quad V_{0}^{\top} V=I \quad V^{\top} V_{0}=0$
Thur $V_{0}^{\Delta}=\left[\begin{array}{ccc}1 & & 1 \\ v_{[21} & \ldots & v_{n}\end{array}\right] \quad U_{0}=\left[\begin{array}{cc}1 & 1 \\ u_{r+1} & \ldots \\ 1 & u_{m} \\ 1 & 1\end{array}\right]$
$U^{\top} U=I \quad U_{0}^{\top} U_{0}=I \quad U^{\top} U_{0}=0$

Hence $U_{1}^{\top} A V_{1}=\underbrace{\left[\begin{array}{cc|c}\sqrt{1_{1}} & 0 & 0 \\ 0 & \sqrt{\lambda r} & \\ \hline 0 & 0\end{array}\right]}_{n}] m \stackrel{\Delta}{=}$

Poof. Start with $A^{\top} A \in \mathbb{R}^{n \times n}$, which is symmetric
By the spedral theorem, we have $A^{\top} A=\sum_{i=1}^{n} d_{i} v_{i} v_{i}^{\top} \quad\left\{v_{i}\right\}_{i=1}^{n}$ athobasis of eigenvector
Note that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top} A\right)=r \leq n$ so that $\lambda_{1} \geqslant \lambda_{2} \ldots \geqslant \lambda_{r}>0=b_{r+1} \ldots \lambda_{n} \quad\left(\right.$ recall $d_{i} \geqslant 0 \quad \forall_{i}$) Consider $\left\{v_{i}\right\}_{i=1}^{r}$; they from an outhobaso for the column space of $\left(A^{\top} A\right)$, hence of $\operatorname{row}(A)$
Consider $\left\{v_{2}\right\}_{i=r+1}^{n}$; they for an sothobasis for the kernel (null space) of A
Check. (1) Sine di<0 $A^{\top} A v_{i}=0$ for $i \in \mathbb{Z}+1 ; n \rrbracket$
Hence $v_{c} \in \operatorname{Kar}\left(A^{\top} A\right)=\operatorname{Kar}(A) ; \quad \operatorname{Span}\left\{v_{i}\right\}_{i=r+1}^{n} C \operatorname{Ker}(A)$
(2) We have a span of dimension $n-r$ and $\operatorname{dim}\left(k_{e r}(A)\right)=n-\operatorname{rank}(A)=n-r$ hence $\operatorname{span}^{2}\left\{v_{i}\right\}_{i=r+1}^{n}=$

Note that $y_{j}^{\top} v_{i}=\frac{1}{\sqrt{\lambda_{j} d_{v}}} v_{j}^{\top} A^{\top} A v_{i}=\frac{1}{\sqrt{\lambda_{j} \lambda_{i}}} d_{i} v_{j}^{\top} v_{i}=\sqrt{\frac{\lambda_{i}}{\lambda_{j}}} v_{j}^{\top} v_{i}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { else }\end{cases}$ Hence $U T=I$

The columns of $\mathbf{V}\left\{\mathbf{v}_{i}\right\}_{i=1}^{r}$ are eigenvectors of the psd matrix $\mathbf{A}^{\top} \mathbf{A} .\left\{\sigma_{i}: 1 \leq i \leq n\right.$ and $\left.\sigma_{i} \neq 0\right\}$ are the square roots of the non-zero eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.

Nole: Sine $A=U \Sigma V^{\top} \quad A^{\top} A=V \Sigma U^{\top} U \Sigma V^{\top}=V \Sigma^{2} V^{\top}$

The columns of $\mathbf{V}\left\{\mathbf{v}_{i}\right\}_{i=1}^{r}$ are eigenvectors of the psd matrix $\mathbf{A}^{\top} \mathbf{A} .\left\{\sigma_{i}: 1 \leq i \leq n\right.$ and $\left.\sigma_{i} \neq 0\right\}$ are the square roots of the non-zero eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.

The columns of $\mathbf{U}\left\{\mathbf{u}_{i}\right\}_{i=1}^{r}$ are eigenvectors of the psd matrix $\mathbf{A} \mathbf{A}^{\top}$. $\left\{\sigma_{i}: 1 \leq i \leq n\right.$ and $\left.\sigma_{i} \neq 0\right\}$ are the square roots of the non-zero eigenvalues of $\mathbf{A A}^{\top}$.

Note: $\quad A A^{\top}=U \Sigma V^{\top} V \Sigma U^{\top}=U \Sigma^{2} U^{\top}=\sum_{i=1}^{r} \sigma_{0}^{2} U_{U} U_{i}^{\top}$

The columns of $\mathbf{V}\left\{\mathbf{v}_{i}\right\}_{i=1}^{r}$ are eigenvectors of the psd matrix $\mathbf{A}^{\top} \mathbf{A} .\left\{\sigma_{i}: 1 \leq i \leq n\right.$ and $\left.\sigma_{i} \neq 0\right\}$ are the square roots of the non-zero eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.

The columns of $\mathbf{U}\left\{\mathbf{u}_{i}\right\}_{i=1}^{r}$ are eigenvectors of the psd matrix $\mathbf{A A}^{\top} .\left\{\sigma_{i}: 1 \leq i \leq n\right.$ and $\left.\sigma_{i} \neq 0\right\}$ are the square roots of the non-zero eigenvalues of $\mathbf{A} \mathbf{A}^{\top}$.

The columns of \mathbf{V} form an orthobasis for $\operatorname{row}(\mathbf{A})$
The columns of \mathbf{U} form an orthobasis for $\operatorname{col}(\mathbf{A})$
Equivalent form of the SVD: $\mathbf{A}=\widetilde{\mathbf{U}} \widetilde{\boldsymbol{\Sigma}} \widetilde{\mathbf{V}}^{T}$ where

- $\widetilde{\mathbf{U}} \in \mathbb{R}^{m \times m}$ is orthonormal
- $\widetilde{\mathbf{V}} \in \mathbb{R}^{n \times n}$ is orthonormal
- $\widetilde{\boldsymbol{\Sigma}} \in \mathbb{R}^{m \times n}$ is

$$
\widetilde{\boldsymbol{\Sigma}} \triangleq\left[\begin{array}{c|c}
\boldsymbol{\Sigma} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0}
\end{array}\right]
$$

SVD AND LEAST-SQUARES

When we cannot solve $\mathbf{y}=\mathbf{A x}$, we solve instead

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{x}\|_{2}^{2} \text { such that } \mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{y}
$$

- This allows us to pick the minimum norm solution among potentially infinitely many solutions of the normal equations.

Recall: when $\mathbf{A} \in \mathbb{R}^{m \times n}$ is of rank n, then $\mathbf{x}=\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}\right)^{-1} \mathbf{y}$
Proposition (General solution) The solution of

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{x}\|_{2}^{2} \text { such that } \mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{y}
$$

is

$$
\hat{\mathbf{x}}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{y}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}
$$

where $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ is the SVD of \mathbf{A}.

Proof. Let $x \in \mathbb{R}^{n}$; then $x=\underbrace{V \underline{\alpha}}_{\epsilon \operatorname{row}(A)}+\underbrace{V_{0} \underline{\alpha_{0}}}_{\epsilon \operatorname{Vec}(A)}$ wi $V \xi \underline{1} V_{0}$ defined earlier in s VD and yis
Hence $V_{x}^{\top}=V^{\top} V_{\underline{\alpha}}^{\alpha}=\underline{\alpha}$ and $V_{0}^{\top} x=V_{0}^{\top} V_{0} \alpha_{0}=\alpha_{0} \quad ; \quad\left\|_{x}\right\|_{2}^{2}=\|V \underline{\alpha}\|_{2}^{2}+\left\|V_{0} \alpha_{2}\right\|_{2}^{2}=\alpha^{\top} V^{\top} V \alpha+\alpha_{0}^{\top} V_{0}^{\top} V_{0} \alpha_{0}$ $=\|\alpha\|_{2}^{2}+\|\alpha\|_{2}^{2}$
Let $y \in \mathbb{R}^{m}$; then $y=\underbrace{U \beta}_{\epsilon \operatorname{cod}(A)}+\underbrace{U_{0} \rho_{0}}_{\epsilon \operatorname{ken}\left(A^{T}\right)} \quad$ wi U and U_{0} as before
Hence $U_{y}^{\top}=\beta$ and $U_{0}^{\top} y=\beta_{0},\left\|_{y}\right\|_{2}^{2}=\|\beta\|_{2}^{2}+\left\|\beta_{2}\right\|_{2}^{2}$
Then $y-A_{x}=U \beta+U_{0} \beta_{0}-U \sum V^{\top}\left(V \alpha+V_{0} \alpha_{0}\right)=U \beta+U_{0} \beta_{0}-U \sum \alpha=U_{0} \beta_{0}+U\left(\beta-\sum \alpha\right)$

$$
\left\|y-A_{x}\right\|_{2}^{2}=\left\|\beta_{0}\right\|_{2}^{2}+\left\|\beta-\sum \alpha\right\|_{2}^{2}
$$

PSEUDO INVERSE

$\mathbf{A}^{+}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top}$ is called the pseudo-inverse, Lanczos inverse, or Moore-Penrose inverse of $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$.
If \mathbf{A} is square invertible then $\mathbf{A}^{+}=\mathbf{A}$
If $m \geq n$ (tall and skinny matrix) of rank n then $\mathbf{A}^{+}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$
If $m \geq m$ (short and fat matrix) of rank m then $\mathbf{A}^{+}=\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}\right)^{-1}$
Note \mathbf{A}^{+}is as "close" to an inverse of \mathbf{A} as possible

STABILITY OF LEAST SQUARES
What if we observe $\mathbf{y}=\mathbf{A} \mathbf{x}_{0}+\mathbf{e}$ and we apply the pseudo inverse? $\hat{\mathbf{x}}=\mathbf{A}^{+} \mathbf{y}$
We can separate the error analysis into two components

$$
\begin{aligned}
\hat{\mathbf{x}}-\mathbf{x}_{0} & =\underbrace{\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}}_{\text {null space error }}+\underbrace{\mathbf{A}^{+} \mathbf{e}}_{\text {noise error }} \\
& =A^{+} y-x_{0}=A^{+}\left(A x_{0}+e\right)-x_{0}
\end{aligned}
$$

Note $A^{+} A_{x_{0}}=V \sum^{-1} U U \sum V^{\top} x_{0}=V V^{\top} x_{0} \neq I_{x_{0}}$ in general, which means that we don't reconstruct x_{0} exactly (when $\operatorname{ranh}(A)<n$, ie. $\operatorname{Ker}(A)$ non trinal)

STABILITY OF LEAST SQUARES

What if we observe $\mathbf{y}=\mathbf{A} \mathbf{x}_{0}+\mathbf{e}$ and we apply the pseudo inverse? $\hat{\mathbf{x}}=\mathbf{A}^{+} \mathbf{y}$
We can separate the error analysis into two components

$$
\hat{\mathbf{x}}-\mathbf{x}_{0}=\underbrace{\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}}_{\text {null space error }}+\underbrace{\mathbf{A}^{+} \mathbf{e}}_{\text {noise error }}
$$

We will express the error in terms of the SVD $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ With

- $\left\{\mathbf{v}_{i}\right\}_{i=1}^{r}$ orthobasis of $\operatorname{row}(\mathbf{A})$, augmented by $\left\{\mathbf{v}_{i}\right\}_{i=1}^{r+1} \in \operatorname{ker} \mathbf{A}$ to form an orthobasis of \mathbb{R}^{n}
- $\left\{\mathbf{u}_{i}\right\}_{i=1}^{r}$ orthobasis of $\operatorname{col}(\mathbf{A})$, augmented by $\{\mathbf{u}\}_{i=1}^{r+1} \in \operatorname{ker} \mathbf{A}^{\top}$ to form an orthobasis of \mathbb{R}^{m}

The null space error is given by

$$
\left\|\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle\mathbf{v}_{i}, \mathfrak{x}_{0}\right\rangle\right|^{2}
$$

Note:

$$
\begin{aligned}
& \begin{aligned}
x_{0}=\sum_{i=1}^{n}\left\langle x_{0}, v_{i}\right\rangle v_{i}= & \underbrace{\sum_{i=1}^{r}\left\langle x_{0}, v_{i}\right\rangle v_{i}}_{=v_{0} v_{0}^{\top} x_{0}}+\underbrace{\sum_{i=r+1}^{n}\left\langle x_{0}, v_{i}\right\rangle v_{i}} \\
& =V^{\top} x_{0}
\end{aligned} \\
& =\sum_{i=1}^{r} v_{i} v_{i}^{\top} x_{0} \\
& =A^{+} A x_{0} \\
& \left\|A^{+} A x_{0}-x_{0}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle x_{0}, v_{i}\right\rangle\right|^{2}
\end{aligned}
$$

STABILITY OF LEAST SQUARES

What if we observe $\mathbf{y}=\mathbf{A} \mathbf{x}_{0}+\mathbf{e}$ and we apply the pseudo inverse? $\hat{\mathbf{x}}=\mathbf{A}^{+} \mathbf{y}$
We can separate the error analysis into two components

$$
\hat{\mathbf{x}}-\mathbf{x}_{0}=\underbrace{\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}}_{\text {null space error }}+\underbrace{\mathbf{A}^{+} \mathbf{e}}_{\text {noise error }}
$$

We will express the error in terms of the SVD $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ With

- $\left\{\mathbf{v}_{i}\right\}_{i=1}^{r}$ orthobasis of $\operatorname{row}(\mathbf{A})$, augmented by $\left\{\mathbf{v}_{i}\right\}_{i=1}^{r+1} \in \operatorname{ker} \mathbf{A}$ to form an orthobasis of \mathbb{R}^{n}
- $\left\{\mathbf{u}_{i}\right\}_{i=1}^{r}$ orthobasis of $\operatorname{col}(\mathbf{A})$, augmented by $\{\mathbf{u}\}_{i=1}^{r+1} \in \operatorname{ker} \mathbf{A}^{\top}$ to form an orthobasis of \mathbb{R}^{m}

The null space error is given by

$$
\left\|\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle\mathbf{v}_{i}, x_{0}\right\rangle\right|^{2}
$$

The noise error is given by

$$
\left\|\mathbf{A}^{+} \mathbf{e}\right\|_{2}^{2}=\sum_{i=1}^{r} \frac{\widehat{1}}{\sigma_{i}^{2}}\left|\left\langle\mathbf{e}, \mathbf{u}_{i}\right\rangle\right|^{2}
$$

$$
\begin{aligned}
& A^{+} e=V \sum^{-1} U_{e}^{\top}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}} v_{i} v_{i}^{\top} e=\sum_{i=1}^{r} \frac{1}{\sigma_{i}}\left\langle v_{i,} e\right\rangle v_{i} \\
& \left\|A^{+} e\right\|_{2}^{2}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}^{2}}\left|\left\langle v_{i, i}\right\rangle\right|^{2}
\end{aligned}
$$

STABLE RECONSTRUCTION BY TRUNCATION

How do we mitigate the effect of small singular values in reconstruction?

$$
\hat{\mathbf{x}}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{y}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}
$$

Truncate the SVD to $r^{\prime}<r$

$$
\mathbf{A}_{t} \triangleq \sum_{i=1}^{r^{\prime}} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} \quad \mathbf{A}_{t}^{+}=\sum_{i=1}^{r^{\prime}} \frac{1}{\sigma_{i}} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
$$

Reconstruct $\hat{\mathbf{x}}_{t}=\sum_{i=1}^{r^{\prime}} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}=\mathbf{A}_{t}$
Error analysis:

$$
\left\|\hat{\mathbf{x}}_{t}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle\mathbf{x}_{0}, \mathbf{v}_{i}\right\rangle\right|^{2}+\sum_{i=r^{\prime}+1}^{r}\left|\left\langle\mathbf{x}_{0}, \mathbf{v}_{i}\right\rangle\right|^{2}+\sum_{i=1}^{r} \frac{1}{\sigma_{i}^{2}}\left|\left\langle\mathbf{e}, \mathbf{u}_{i}\right\rangle\right|^{2}
$$

STABLE RECONSTRUCTION BY REGULARIZATION

Regularization means changing the problem to solve

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{2}^{2} \quad \lambda>0
$$

The solution is

$$
\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}=\mathbf{V}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{y}
$$

We have seen several solutions to systems of linear equations $\mathbf{A x}=\mathbf{y}$ so far

- A full column rank: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$
- A full row rank: $\hat{\mathbf{x}}=\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}\right)^{-1} \mathbf{y}$
- Ridge regression: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\delta \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$
- Kernel regression: $\hat{\mathbf{x}}=(\mathbf{K}+\delta \mathbf{I})^{-1} \mathbf{y}$
- Ridge regression in Hilbert space: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\delta \mathbf{G}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$

Extension: constrained least-squares

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \text { s.t. } \mathbf{x}=\mathbf{B} \boldsymbol{\alpha} \text { for some } \boldsymbol{\alpha}
$$

- The solution is $\hat{\mathbf{x}}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{A}^{\top} \mathbf{A B}\right)^{-1} \mathbf{B}^{\top} \mathbf{A}^{\top} \mathbf{y}$

All these problems involve a symmetric positive definite system of equations.

- Many methods to achieve this based on matrix factorization

EASY SYSTEMS

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and diagonal
- $O(n)$ complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and orthogonal
- $O\left(n^{2}\right)$ complexity

Lower triangular system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and lower diagonal
- $O\left(n^{2}\right)$ complexity

General strategy: factorize \mathbf{A} to recover some of the structures above

