STABILITY AND NUMERICAL ASPECTS OF LEAST SQUARES

Dr. Matthieu R Bloch
Monday, November 22, 2021

LOGISTICS

General announcements

- Assignment 6 to be posted... (grading traffic jam)
- 4 lectures left! (No lecture on Wednesday November 24, 2021)

Midterm 2

- 99\% graded, grades released after Thanksjuing weekend

LOGISTICS

General announcements

- Assignment 6 to be posted... (grading traffic jam)
- 4 lectures left! (No lecture on Wednesday November 24, 2021)

Midterm 2

- 99\% graded, grades released after Thanksiving weekend
- Midterm solution during office hours on Tuesday November 23, 2021

Assignment 5

- Grading finalized

Assignment 6 and 7

- Posted this week, due date on Monday December 6 and Monday December 13

WHAT'S ON THE AGENDA FOR TODAY?

Last time:

- Stability of least squares

Today:

- More on stability and numerical considerations

Reading: lecture notes 14/15/16

Toddlers can do it!

STABILITY OF LEAST SQUARES

What if we observe $\mathbf{y}=\mathbf{A} \mathbf{x}_{0}+\mathbf{e}$ and we apply the pseudo inverse? $\hat{\mathbf{x}}=\mathbf{A}^{+} \mathbf{y}$
We can separate the error analysis into two components

$$
\hat{\mathbf{x}}-\mathbf{x}_{0}=\underbrace{\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}}_{\text {null space error }}+\underbrace{\mathbf{A}^{+} \mathbf{e}}_{\text {noise error }}
$$

We will express the error in terms of the SVD $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ With

- $\left\{\mathbf{v}_{i}\right\}_{i=1}^{r}$ orthobasis of $\operatorname{row}(\mathbf{A})$, augmented by $\left\{\mathbf{v}_{i}\right\}_{i=1}^{r+1} \in \operatorname{ker} \mathbf{A}$ to form an orthobasis of \mathbb{R}^{n}
- $\left\{\mathbf{u}_{i}\right\}_{i=1}^{r}$ orthobasis of $\operatorname{col}(\mathbf{A})$, augmented by $\{\mathbf{u}\}_{i=1}^{r+1} \in \operatorname{ker} \mathbf{A}^{\top}$ to form an orthobasis of \mathbb{R}^{m}

The null space error is given by

$$
\left\|\mathbf{A}^{+} \mathbf{A} \mathbf{x}_{0}-\mathbf{x}_{0}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle\mathbf{v}_{i}, x_{0}\right\rangle\right|^{2}
$$

The noise error is given by

$$
\left\|\mathbf{A}^{+} \mathbf{e}\right\|_{2}^{2}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}^{2}}\left|\left\langle\mathbf{e}, \mathbf{u}_{i}\right\rangle\right|^{2}
$$

STABLE RECONSTRUCTION BY TRUNCATION

How do we mitigate the effect of small singular values in reconstruction?

$$
\hat{\mathbf{x}}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{y}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}
$$

Truncate the SVD to $r^{\prime}<r$

$$
\mathbf{A}_{t} \triangleq \sum_{i=1}^{r^{\prime}} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} \quad \mathbf{A}_{t}^{+}=\sum_{i=1}^{r^{\prime}} \frac{1}{\sigma_{i}} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
$$

Reconstruct $\hat{\mathbf{x}}_{t}=\sum_{i=1}^{r^{\prime}} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}=\mathbf{A}_{t}$
Error analysis:

$$
\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{0}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle\mathbf{x}_{0}, \mathbf{v}_{i}\right\rangle\right|^{2}+\underbrace{\sum_{i=r^{\prime}+1}^{r}\left|\left\langle\mathbf{x}_{0}, \mathbf{v}_{i}\right\rangle\right|^{2}+\sum_{i=1}^{r} \frac{1}{\sigma_{i}^{2}}\left|\left\langle\mathbf{e}, \mathbf{u}_{i}\right\rangle\right|^{2}}_{\text {Tradeoff }}
$$

STABLE RECONSTRUCTION BY TRUNCATION

How do we mitigate the effect of small singular values in reconstruction?

$$
\hat{\mathbf{x}}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\top} \mathbf{y}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}
$$

Truncate the SVD to $r^{\prime}<r$

$$
\mathbf{A}_{t} \triangleq \sum_{i=1}^{r^{\prime}} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top} \quad \mathbf{A}_{t}^{+}=\sum_{i=1}^{r^{\prime}} \frac{1}{\sigma_{i}} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
$$

Reconstruct $\hat{\mathbf{x}}_{t}=\sum_{i=1}^{r^{\prime}} \frac{1}{\sigma_{i}}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{v}_{i}=\mathbf{A}_{t}$
Error analysis:

$$
\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{0}\right\|_{2}^{2}=\sum_{i=r+1}^{n}\left|\left\langle\mathbf{x}_{0}, \mathbf{v}_{i}\right\rangle\right|^{2}+\sum_{i=r^{\prime}+1}^{r}\left|\left\langle\mathbf{x}_{0}, \mathbf{v}_{i}\right\rangle\right|^{2}+\sum_{i=1}^{r} \frac{1}{\sigma_{i}^{2}}\left|\left\langle\mathbf{e}, \mathbf{u}_{i}\right\rangle\right|^{2}
$$

Regularization means changing the problem to solve

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{2}^{2} \quad \lambda>0
$$

The solution is

Scaling by $\frac{\sigma_{i}}{\sigma_{i}^{2}+d}$ for every. $\in \llbracket 1 ; r \rrbracket$
If $\sigma_{i}^{2} \ll \lambda$ then $\frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda} \approx \frac{\sigma_{i}}{\lambda} \ll 1$
If $\sigma_{i}^{2}>d$ then $\frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda} \approx \frac{1}{\sigma_{i}} \ll 1$

Poof of $\left(A^{\top} A+d I\right) A_{j}^{-1}=V\left(\Sigma^{2}+d I\right)^{-1} \Sigma U^{\top} y$.
Recall that $\tilde{V}=\left[V \mid V_{0}\right] \in \mathbb{R}^{n \times n}$
Recall $A=U \Sigma v^{\top} \in \mathbb{R}^{m \times n}$
Irtadou $\tilde{\Sigma}=\left(\begin{array}{lll}\sigma_{1} & & \\ \sigma_{r} & 0 \\ 0 & & \\ 0 & \Sigma_{0}\end{array}\right) \in \mathbb{R}^{n \times n}$ $A^{\top} A \in \mathbb{R}^{n, n}$

Note that $A^{\top} A+d I_{n}=\tilde{V} \tilde{\Sigma}^{2} \tilde{V}^{\top}+\lambda \tilde{V} \tilde{V}^{\top}=\tilde{V}\left(\tilde{\Sigma}^{2}+d I\right) \tilde{V}^{\top}$
Hence $\left(A^{\top} A+b I\right)^{-1} A^{\top} y=\frac{\tilde{V}}{(2)} \underbrace{\tilde{\Sigma}^{2}+d I}_{(1)})^{-1} \tilde{V}^{\top} V \Sigma U^{\top} y$
Note $\tilde{V}^{\top} V=\left[V \vdots V_{0}\right]^{\top} V=\left[\begin{array}{c}I_{\text {dor }} \\ \hdashline-\quad \\ n=x d\end{array}\right]$ so that $\tilde{V}\left(\tilde{\Sigma}^{2}+\lambda I_{n}\right)^{-1} \tilde{V}^{\top} V=V\left(\Sigma^{2}+\lambda I_{r}\right)^{-1}$

Error analysis:

$$
\begin{aligned}
\hat{x}_{E k} & =\sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}\left\langle v_{i}, y\right\rangle v_{i} \quad \text { wi } y=A x_{0}+e \\
& =\sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}\left\langle v_{i}, A x_{0}\right\rangle v_{i}+\sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}\left\langle v_{i,} e\right\rangle v_{i} \\
& =\underbrace{\sigma_{i}^{2}}_{\sum_{i=1}^{n} \frac{\sum_{i}^{2}}{\sigma_{i}^{2}+\lambda}\left\langle v_{i}, x_{0}\right\rangle v_{i}}+\underbrace{(2)}_{\sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}\left\langle v_{i,} e\right\rangle v_{\nu}}
\end{aligned}
$$

Recall $x_{0}=\sum_{i=1}^{n}\left\langle v_{i} x_{0}\right\rangle v_{i}$; we will have the same kennel error as befoul
(1) is a sore of "regularization" error wi magnitude squared $\sum_{i=1}^{r}\left(1-\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+d}\right)^{2}\left|\left\langle v_{i}, x_{0}\right\rangle\right|^{2}=\sum_{i=1}^{r}\left|\left\langle v_{i}, x_{0}\right\rangle\right|^{2} \frac{\lambda^{2}}{\left(\sigma_{i}^{2}+d\right)^{2}}$

If $\sigma_{i}^{2} \ll d$ the error is $\left|\left\langle v_{i}, x_{n}\right\rangle\right|^{2}$
If $\sigma_{0}^{2} \gg \lambda$ the error is $\frac{d^{2}}{\sigma_{i}^{2}} \ll 1$

$$
L\left\|\sum_{i=1}^{r}\left\langle v_{i}, x_{0}\right\rangle v_{c}-\sum_{i=1}^{r} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}\left\langle v_{c}, x_{0}\right\rangle v_{c}\right\|_{2}^{2}
$$

(2) is a source of nose error wi magnitude squared $\sum_{i=1}^{r}\left(\frac{\sigma_{i}}{\pi_{i}^{2}+b}\right)^{2}\left|\left\langle v_{c i} e\right\rangle\right|^{2} \leq \frac{1}{4 d} \sum_{i=1}^{r}\left|\left\langle v_{c_{i}} e\right\rangle\right|^{2} \leq \frac{1}{4 d}\|e\|_{e}^{2}$

Proof of $\left(\frac{\sigma}{\sigma_{i}^{2}+1}\right)^{2} \leq \frac{1}{4 \lambda}$
Set $f(x)=\left(\frac{x}{x^{2}+\lambda}\right)^{2} \quad x \in(0 ;+\infty) \quad f(0)=\frac{1}{\lambda^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=2 \frac{x}{x^{2}+h} \times \frac{x^{2}+\lambda-2 x^{2}}{\left(x^{2}+\lambda\right)^{2}}=\frac{2 x}{\left(x^{2}+6\right)^{3}} \times\left(\lambda-x^{2}\right) \\
& f(x) \geqslant 0 \Leftrightarrow \lambda-x^{2} \geqslant 0 \\
& \Leftrightarrow x \leq \sqrt{h}
\end{aligned}
$$

Note that $f(\sqrt{\lambda})=\left(\frac{\sqrt{h}}{2 \lambda}\right)^{2}=\left(\frac{1}{2 \sqrt{\lambda}}\right)^{2}=\frac{1}{4 \lambda}$

We have seen several solutions to systems of linear equations $\mathbf{A x}=\mathbf{y}$ so far

- A full column rank: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$
- A full row rank: $\hat{\mathbf{x}}=\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}\right)^{-1} \mathbf{y}$
- Ridge regression: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\delta \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$
- Kernel regression: $\hat{\mathbf{x}}=(\mathbf{K}+\delta \mathbf{I})^{-1} \mathbf{y}$
- Ridge regression in Hilbert space: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\delta \mathbf{G}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$

Extension: constrained least-squares

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \text { s.t. } \mathbf{x}=\mathbf{B} \boldsymbol{\alpha} \text { for some } \boldsymbol{\alpha}
$$

- The solution is $\hat{\mathbf{x}}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{A}^{\top} \mathbf{A B}\right)^{-1} \mathbf{B}^{\top} \mathbf{A}^{\top} \mathbf{y}$

We have seen several solutions to systems of linear equations $\mathbf{A x}=\mathbf{y}$ so far

- A full column rank: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$
- A full row rank: $\hat{\mathbf{x}}=\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}\right)^{-1} \mathbf{y}$
- Ridge regression: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\delta \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$
- Kernel regression: $\hat{\mathbf{x}}=(\mathbf{K}+\delta \mathbf{I})^{-1} \mathbf{y}$
- Ridge regression in Hilbert space: $\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \mathbf{A}+\delta \mathbf{G}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}$

Extension: constrained least-squares

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \text { s.t. } \mathbf{x}=\mathbf{B} \boldsymbol{\alpha} \text { for some } \boldsymbol{\alpha}
$$

- The solution is $\hat{\mathbf{x}}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{A}^{\top} \mathbf{A B}\right)^{-1} \mathbf{B}^{\top} \mathbf{A}^{\top} \mathbf{y}$

All these problems involve a symmetric positive definite system of equations.

- Many methods to achieve this based on matrix factorization

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and diagonal
- $O(n)$ complexity

$$
A x=y=\left(\begin{array}{ccc}
a_{1} & & \\
- & \ddots & 0 \\
0 & \ddots & a_{n}
\end{array}\right) x=\left(\begin{array}{c}
a_{1} x_{1} \\
\vdots \\
\vdots \\
a_{n} x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right) \quad \text { the solution is } x_{i}=\frac{y_{1}}{a_{0}}
$$

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and diagonal
- $O(n)$ complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and orthogonal
- $O\left(n^{2}\right)$ complexity
$y=A x$ so that $A^{\top} y=x$ bic $A^{\top} A=I \quad O\left(n^{2}\right)$ is the cost of matrix multipheation

EASY SYSTEMS

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and diagonal
- $O(n)$ complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and orthogonal
- $O\left(n^{2}\right)$ complexity

Lower triangular system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and lower diagonal
- $O\left(n^{2}\right)$ complexity

$$
A x=y=\left(\begin{array}{ccc}
a_{11} & & 0 \\
* & \ddots & \\
* & \ddots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right)
$$

EASY SYSTEMS

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and diagonal
- $O(n)$ complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and orthogonal
- $O\left(n^{2}\right)$ complexity

Lower triangular system

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible and lower diagonal
- $O\left(n^{2}\right)$ complexity

General strategy: factorize \mathbf{A} to recover some of the structures above

LU factorization
$A \in \mathbb{R}^{n \times n}$ can be written $A=L U$ wi $L \in \mathbb{R}^{n+4}$ lower diagonal
$U \in \mathbb{R}^{n+e n}$ upper diagonal
If A mable then U and L are as well so that $A_{x}=b \Leftrightarrow L U_{x=b} \Rightarrow x=U^{-1} L^{-1} b(k)$
We can solve by (1) solve $L \omega=b$ fo ω triangular y stems $O\left(n^{2}\right)$ (instead of $O\left(n^{3}\right)$ if inverting A d

FACTORIZATIONS

LU factorization

Cholesky factorization
QR decomposition
SVD and eigenvalue decompositions

COMPUTING EIGENVALUE DECOMPOSITIONS FOR SYMETRIC MATRICES

Many techniques: we shall only discuss one based on power iterations

