STABILITY AND NUMERICAL ASPECTS OF LEAST SQUARES

DR. MATTHIEU R BLOCH

Monday, November 22, 2021

LOGISTICS

General announcements

- Assignment 6 to be posted... (grading traffic jam)
- 4 lectures left! (No lecture on Wednesday November 24, 2021)

Midterm 2

99% graded, grades released after Thanksiving weekend

LOGISTICS

General announcements

- Assignment 6 to be posted... (grading traffic jam)
- 4 lectures left! (No lecture on Wednesday November 24, 2021)

Midterm 2

- 99% graded, grades released after Thanksiving weekend
- Midterm solution during office hours on Tuesday November 23, 2021

Assignment 5

Grading finalized

Assignment 6 and 7

Posted this week, due date on Monday December 6 and Monday December 13

Last time:

Stability of least squares

Today:

More on stability and numerical considerations

Reading: lecture notes 14/15/16

Toddlers can do it!

STABILITY OF LEAST SQUARES

What if we observe $\mathbf{y} = \mathbf{A}\mathbf{x}_0 + \mathbf{e}$ and we apply the pseudo inverse? $\hat{\mathbf{x}} = \mathbf{A}^+\mathbf{y}$

We can separate the error analysis into two components

We will express the error in terms of the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ With

- $\{\mathbf{v}_i\}_{i=1}^r$ orthobasis of $\operatorname{row}(\mathbf{A})$, augmented by $\{\mathbf{v}_i\}_{i=1}^{r+1} \in \ker \mathbf{A}$ to form an orthobasis of \mathbb{R}^n
- $\{\mathbf{u}_i\}_{i=1}^r$ orthobasis of $\operatorname{col}(\mathbf{A})$, augmented by $\{\mathbf{u}\}_{i=1}^{r+1} \in \ker \mathbf{A}^{\mathsf{T}}$ to form an orthobasis of \mathbb{R}^m

The null space error is given by

$$ig\|\mathbf{A}^+\mathbf{A}\mathbf{x}_0-\mathbf{x}_0ig\|_2^2 = \sum_{i=r+1}^n |\langle \mathbf{v}_i, x_0
angle|^2$$

The noise error is given by

$$ig\|\mathbf{A}^+\mathbf{e}ig\|_2^2 = \sum_{i=1}^r rac{1}{\sigma_i^2} |\langle \mathbf{e}, \mathbf{u}_i
angle |^2$$

STABLE RECONSTRUCTION BY TRUNCATION

How do we mitigate the effect of small singular values in reconstruction?

$$\hat{\mathbf{x}} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{y} = \sum_{i=1}^{r} rac{1}{\sigma_i} \langle \mathbf{y}, \mathbf{u}_i
angle \mathbf{v}_i$$

Truncate the SVD to $r^\prime < r$

$$\mathbf{A}_t riangleq \sum_{i=1}^{r'} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\intercal} \qquad \mathbf{A}_t^+ = \sum_{i=1}^{r'} rac{1}{\sigma_i} \mathbf{u}_i \mathbf{v}_i^{\intercal}$$

Reconstruct
$$\hat{\mathbf{x}}_t = \sum_{i=1}^{r'} \frac{1}{\sigma_i} \langle \mathbf{y}, \mathbf{u}_i \rangle \mathbf{v}_i = \mathbf{A}_t$$

Error analysis:

$$\|\hat{\mathbf{x}}_{t} - \mathbf{x}_{0}\|_{2}^{2} = \sum_{i=r+1}^{n} |\langle \mathbf{x}_{0}, \mathbf{v}_{i} \rangle|^{2} + \sum_{i=r'+1}^{r} |\langle \mathbf{x}_{0}, \mathbf{v}_{i} \rangle|^{2} + \sum_{i=1}^{r'} |\langle \mathbf{x}_{0},$$

 $|rac{1}{\sigma_i^2}|\langle {f e}, {f u}_i
angle|^2$

STABLE RECONSTRUCTION BY TRUNCATION

How do we mitigate the effect of small singular values in reconstruction?

$$\hat{\mathbf{x}} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{y} = \sum_{i=1}^{r} \frac{1}{\sigma_i} \langle \mathbf{y}, \mathbf{u}_i \rangle \mathbf{v}_i$$

Truncate the SVD to $r^\prime < r$

$$\mathbf{A}_t riangleq \sum_{i=1}^{r'} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\intercal} \qquad \mathbf{A}_t^+ = \sum_{i=1}^{r'} rac{1}{\sigma_i} \mathbf{u}_i \mathbf{v}_i^{\intercal}$$

Reconstruct
$$\hat{\mathbf{x}}_t = \sum_{i=1}^{r'} \frac{1}{\sigma_i} \langle \mathbf{y}, \mathbf{u}_i \rangle \mathbf{v}_i = \mathbf{A}_t$$

Error analysis:

$$\|\hat{\mathbf{x}}_t - \mathbf{x}_0\|_2^2 = \sum_{i=r+1}^n |\langle \mathbf{x}_0, \mathbf{v}_i
angle|^2 + \sum_{i=r'+1}^r |\langle \mathbf{x}_0, \mathbf{v}_i
angle|^2 + \sum_{i=1}^{r'} \langle \mathbf{x}_i, \mathbf{v}_i
angle|^2$$

 $rac{1}{\sigma_i^2} |\langle {f e}, {f u}_i
angle|^2 \; ,$

STABLE RECONSTRUCTION BY REGULARIZATION

Regularization means changing the problem to solve

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{y}-\mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_2^2 \qquad \lambda > 0$$

The solution is

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda\mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y} = \mathbf{V}(\mathbf{\Sigma}^{2} + \lambda\mathbf{I})^{-1}\mathbf{\Sigma}\mathbf{U}$$
(acall normal equations = $\begin{bmatrix} \mathbf{\Sigma} & \mathbf{v}_{i} \\ \mathbf{v}_{i} & \mathbf{v}_{i} \\ \mathbf{v}_{i} & \mathbf{v}_{i} \\ \mathbf{v}_{i} \\$

If viked then
$$\frac{\nabla i}{\nabla i^2 + d} \approx \frac{\nabla i}{d} \\$$

If $\nabla i^2 \times d$ then $\frac{\nabla i}{\nabla i^2 + d} \approx \frac{1}{\nabla i} \ll 1$

 $\mathbf{T}\mathbf{y}$

Ti for every . E [];r] Ti²+d

$$\begin{aligned} \frac{1}{4} \frac{$$

$(Z^2 + \lambda I_r)^{-1}$

Error avalysis:
$$\tilde{x}_{tk} = \sum_{i=1}^{r} \frac{\nabla i}{\sigma_{i}^{2} + \lambda} \langle u_{i}\eta \rangle \forall i$$
 will $y = Ax_{0} + e$

$$= \sum_{i=1}^{r} \frac{\nabla i}{\sigma_{i}^{2} + \lambda} \langle u_{i}|Ax_{0} \rangle \forall_{i} + \sum_{i=1}^{r} \frac{\nabla i}{\sigma_{i}^{2} + \lambda} \langle u_{i}|e \rangle \forall_{i}$$

$$= \sum_{i=1}^{r} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda} \langle v_{i},x_{0} \rangle \forall_{0} + \sum_{i=1}^{r} \frac{\nabla i}{\sigma_{i}^{2} + \lambda} \langle u_{i}|e \rangle \forall_{0}$$

$$Recall \quad x_{0} = \sum_{i=1}^{n} \langle v_{i},x_{0} \rangle \forall_{0} \quad y = will have \quad bu \text{ same kennel error as before}$$
(1) is a source of "regularization" error with magnitude squared $\sum_{i=1}^{r} (1 - \frac{\nabla i^{2}}{\sigma_{i}^{2} + \lambda})^{2} |\langle v_{i},x_{0} \rangle|^{2} = \sum_{i=1}^{r} |\langle v_{i},x_{0} \rangle|^{2} + \frac{\lambda}{\sigma_{i}^{2}}$

 $|\langle v_{ii}e \rangle|^2 \leq \frac{1}{4d} ||e||_e^2$

$$\frac{\operatorname{Prod}}{\operatorname{Prod}} = \left(\frac{\pi}{\sqrt{x^{2}+h}}\right)^{2} \leq \frac{1}{4A}$$

$$\operatorname{Set} \quad \int (x)^{2} = \left(\frac{x}{x^{2}+h}\right)^{2} \quad x \in (0; +\infty) \qquad \int (0)^{2} = \frac{1}{A^{2}}$$

$$\int (x)^{2} = \left(\frac{x}{x^{2}+h}\right)^{2} \quad x \in (0; +\infty) \qquad \int (0)^{2} = \frac{1}{A^{2}}$$

$$\int (x)^{2} = \left(\frac{x}{x^{2}+h}\right)^{2} = \frac{2 \times x}{(x^{2}+h)^{2}} = \frac{2 \times x}{(x^{2}+h)^{3}} \times (A - x^{2})$$

$$\int (x)^{2} = \left(\frac{x}{A}\right)^{2} = \left(\frac{1}{2A}\right)^{2} = \left(\frac{1}{2A}\right)^{2} = \frac{1}{4A}$$
Note that
$$\int (1h)^{2} = \left(\frac{1}{2A}\right)^{2} = \left(\frac{1}{2A}\right)^{2} = \frac{1}{4A}$$

NUMERICAL METHODS

We have seen several solutions to systems of linear equations $\mathbf{A}\mathbf{x}=\mathbf{y}$ so far

- A full column rank: $\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$
- A full row rank: $\hat{\mathbf{x}} = \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{y}$
- Ridge regression: $\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \delta\mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$
- Kernel regression: $\hat{\mathbf{x}} = (\mathbf{K} + \delta \mathbf{I})^{-1} \mathbf{y}$
- Ridge regression in Hilbert space: $\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \delta\mathbf{G})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$

Extension: constrained least-squares

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \text{ s.t. } \mathbf{x} = \mathbf{B}\boldsymbol{\alpha} \text{ for some } \boldsymbol{\alpha}$$

• The solution is $\hat{\mathbf{x}} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{y}$

NUMERICAL METHODS

We have seen several solutions to systems of linear equations $\mathbf{A}\mathbf{x}=\mathbf{y}$ so far

- A full column rank: $\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$
- A full row rank: $\hat{\mathbf{x}} = \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{y}$
- Ridge regression: $\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \delta\mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$
- Kernel regression: $\hat{\mathbf{x}} = (\mathbf{K} + \delta \mathbf{I})^{-1} \mathbf{y}$
- Ridge regression in Hilbert space: $\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \delta\mathbf{G})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{y}$

Extension: constrained least-squares

$$\min_{\mathbf{x}\in\mathbb{R}^n}\|\mathbf{y}-\mathbf{A}\mathbf{x}\|_2^2 ext{ s.t. } \mathbf{x} = \mathbf{B}oldsymbollpha ext{ for some }oldsymbollpha$$

• The solution is $\hat{\mathbf{x}} = \mathbf{B} (\mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{B})^{-1} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{y}$

All these problems involve a symmetric positive definite system of equations.

Many methods to achieve this based on matrix factorization

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and diagonal
- O(n) complexity

$$A x = y = \begin{pmatrix} a_1 & & \\ & \ddots & 0 \\ 0 & \ddots & a_n \end{pmatrix} x = \begin{pmatrix} a_1 x_1 \\ \vdots \\ \vdots \\ a_n x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and diagonal
- O(n) complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and orthogonal
- $O(n^2)$ complexity

matrix multiplication

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and diagonal
- O(n) complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and orthogonal
- $O(n^2)$ complexity

Lower triangular system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and lower diagonal
- $O(n^2)$ complexity

$$A x = y = \begin{pmatrix} a_{11} & 0 \\ * & a_{mn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ \vdots \\ x_{m} \end{pmatrix} = \begin{pmatrix} y_{1} \\ \vdots \\ y_{m} \end{pmatrix}$$

ie.

$$a_{11}x_1 = y_1$$

 $a_{21}x_1 + a_{22}x_2 = y_2$
 ie
 $a_{11}x_1 + a_{22}x_2 = y_2$
 ie
 $a_{11}x_1 + a_{22}x_2 = y_2$
 ie

subshiption

Diagonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and diagonal
- O(n) complexity

Orthogonal system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and orthogonal
- $O(n^2)$ complexity

Lower triangular system

- $\mathbf{A} \in \mathbb{R}^{n imes n}$ invertible and lower diagonal
- $O(n^2)$ complexity

General strategy: factorize ${f A}$ to recover some of the structures above

FACTORIZATIONS

LU factorization

x = U''L'b (k)

(instead of O(n3) if inverting A d

FACTORIZATIONS

LU factorization

Cholesky factorization

QR decomposition

SVD and eigenvalue decompositions

COMPUTING EIGENVALUE DECOMPOSITIONS FOR SYMETRIC MATRICES

Many techniques: we shall only discuss one based on *power iterations*