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LOGISTICS

General announcements
= Assignment 6 posted (last assignment)
» Due December 7, 2021 for bonus, deadline December 10, 2021
» 3 |ectures left
= | et me know what’s missing
Midterm 2 / Assignment 5

» Grades posted this week



WHAT’S ON THE AGENDA FOR TODAY?

Last time:
= Numerical considerations
Today:
» (Fast discussion) of additional numerical considerations

Reading: lecture notes 14/15/16

Toddlers can do it!



EASY SYSTEMS

Diagonal system
= A € R™"invertible and diagonal

» O(n) complexity

Orthogonal system
» A € R"™"invertible and orthogonal
= O(n?) complexity

Lower triangular system
» A € R™"invertible and lower diagonal
= O(n?) complexity

General strategy: factorize A to recover some of the structures above



FACTORIZATIONS

LU factorization
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FACTORIZATIONS

LU factorization

Cholesky factorization
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FACTORIZATIONS

LU factorization
Cholesky factorization

QR decomposition
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FACTORIZATIONS

LU factorization
Cholesky factorization
QR decomposition

SVD and eigenvalue decompositions



COMPUTING EIGENVALUE DECOMPOSITIONS FOR SYMETRIC
MATRICES

Many techniques: we shall only discuss one based on power iterations
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COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown function f : X — Y : x — y = f(x) to learn
= The formula to distinguish cats from dogs

2. Adataset D = {(x1,91),- -+, (XN, Yn)}
= X; € X £ R% picture of cat/dog
"y, €Y 2 R: the corresponding label cat/dog

3. Aset of hypotheses ‘H as to what the function could be
= Example: deep neural nets with AlexNet architecture

4. An algorithm ALG to find the best h € H that explains f

Terminology:
= Y = R:regression problem
= | Y| < oo: classification problem
» |Y| = 2: binary classification problem

The goal is to generalize, i.e., be able to classify inputs we have
not seen.

f: X =Y

&

D = {(Xl,y1)," ' ,(XN,yN)}

g: X —)Y

Learning model #1
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A LEARNING PUZZLE

Learning seems impossible without additional assumptions!



POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with unknown probability p € [0, 1]
P (head) = pand P (tail) =1 — p int get RandomNumber ()

return 4. // chosen by foir dice roll.
/I quaranteed to be random.

Say we flip the coin IV times, can we estimate p? 3
# head https://xkcd.com/221/
P=™N

Can we relate p to p?

= The law of large numbers tells us that p converges in probability to p as [N gets large

Ve > 0 P(‘ﬁ—p|>e)]\:> 0.

It is possible that p is completely off but it is not probable
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COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown function f : X — Y : x — y = f(x) to learn

2. Adataset D = {(x1,v1),- -, (XN, yn)} Jid =Y I
o {x;}, i.i.d. from unknown distribution Px on X & /
rl {yz ,fil are the corresponding labelsy; € Y 2R D= {(X1,%1), -, (XnN,¥UN)}
3. Aset of hypotheses H as to what the function could be H=1{h;:i €S}
4, An algorithm ALG to find the best h € H that explains f @
g: X —>)Y

Learning model #2



ANOTHER LEARNING PUZZLE

Which color is the dress?



COMPONENTS OF SUPERVISED MACHINE LEARNING

.. nonincremental

1. An unknown conditional distribution Py, to learn
= P x models f : X — Y with noise

2. Adataset D 2 {(x1,y1), -+, (xn,yn)}

s {x;}7Y, i.i.d.from distribution Py on X
" {y; z-]il are the corresponding labels y; ~ Fyx—x,

3. Aset of hypotheses ‘H as to what the function could be

4. An algorithm ALG to find the best A € H that explains f ::

The roles of P, and Py are different
= [yx is what we want to learn, captures the underlying
function and the noise added to it
» P, models sampling of dataset, need not be learned

Pyix

c

D ={(x1,91), " » (X5, yn)}

7‘[={h?;:’l:€8}

g: X —>)Y

Learning model #3



YET ANOTHER LEARNING PUZZLE

Assume that you are designing a fingerprint authentication system
= You trained your system with a fancy machine learning system
= The probability of wrongly authenticating is 1%

= The probability of correctly authenticating is 60%
= |s this a good system?

It depends!

= |[f you are GTRI, this might be ok (security matters more)
.. . Biometric authentication system
= |f you are Apple, this is not acceptable (convenience matters more)

Thereis an application dependent cost that can affect the design



COMPONENTS OF SUPERVISED MACHINE LEARNING

1. Adataset D £ {(x1,91),---, (XN, yNn)}

s {x;}]" i.i.d. from an unknown distribution Py on X (
2. An unknown conditional distribution Py x

= P,y models f : X — Y with noise

" {y; z-]il are the corresponding labels y; ~ Fyx—x,

3. Aset of hypotheses H as to what the function could be

4. Aloss function £ : Y x Y — R capturing the “cost” of
prediction

5. An algorithm ALG to find the best h € H that explains f

g: X —)Y

Final supervised learning model



