LEARNING

Dr. Matthieu R Bloch
Wednesday, December 1, 2021

LOGISTICS

General announcements

- Assignment 6 posted (last assignment)
- Due December 7, 2021 for bonus, deadline December 10, 2021
- 2 lectures left
- Let me know what's missing

Assignment 5 grades posted
Reviewing Midterm2 grades one last time

WHAT'S ON THE AGENDA FOR TODAY?

The learning problem and why we need probabilities.
Lecture notes 17 and 23

Toddlers can do it!

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown function $f: \mathcal{X} \rightarrow \mathcal{Y}: \mathbf{x} \mapsto y=f(\mathbf{x})$ to learn

- The formula to distinguish cats from dogs

2. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\mathbf{x}_{i} \in \mathcal{X} \triangleq \mathbb{R}^{d}$: picture of cat/dog
- $y_{i} \in \mathcal{Y} \triangleq \mathbb{R}$: the corresponding label cat/dog

3. A set of hypotheses \mathcal{H} as to what the function could be

- Example: deep neural nets with AlexNet architecture

4. An algorithm ALG to find the best $h \in \mathcal{H}$ that explains f

Learning model \#1

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown function $f: \mathcal{X} \rightarrow \mathcal{Y}: \mathbf{x} \mapsto y=f(\mathbf{x})$ to learn

- The formula to distinguish cats from dogs

2. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\mathbf{x}_{i} \in \mathcal{X} \triangleq \mathbb{R}^{d}$: picture of cat/dog
- $y_{i} \in \mathcal{Y} \triangleq \mathbb{R}$: the corresponding label cat/dog

3. A set of hypotheses \mathcal{H} as to what the function could be

- Example: deep neural nets with AlexNet architecture

4. An algorithm ALG to find the best $h \in \mathcal{H}$ that explains f

Terminology:

- $\mathcal{Y}=\mathbb{R}$: regression problem
- $|\mathcal{Y}|<\infty$: classification problem
- $|\mathcal{Y}|=2$: binary classification problem

The goal is to generalize, i.e., be able to classify inputs we have not seen.

A LEARNING PUZZLE

$$
f\left(\mathbf{x}_{1}\right)=f\left(\mathbf{x}_{2}\right)=f\left(\mathbf{x}_{3}\right)=+1
$$

$$
f\left(\mathbf{x}_{4}\right)=f\left(\mathbf{x}_{5}\right)=f\left(\mathbf{x}_{6}\right)=-1
$$

$$
f\left(\mathbf{x}_{7}\right)=?
$$

Learning seems impossible without additional assumptions!

POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with unknown probability $p \in[0,1]$
$\mathbb{P}($ head $)=p$ and $\mathbb{P}($ tail $)=1-p$
Say we flip the coin N times, can we estimate p ?

```
int getRandomNumber()
return 4; // chosen by fair dice roll. // guaranteed to be random.
\}
```

https://xkcd.com/221/

Can we relate \hat{p} to p ?

$$
\begin{aligned}
& \text { Note: Let }\left\{x_{i}\right\}_{i=1}^{N} \text { the coin } f\left(\text { piss } x_{i} \in\{\text { head, tail }\} \quad \forall i x_{i} \sim B(p)\right. \\
& \text { We compute } \begin{array}{r}
\hat{p}=\frac{1}{N} \sum_{i=1}^{n} \mathbb{1}\left\{x_{i}=\text { head }\right\} \\
\quad=\mid 1 \text { if } x_{i}=\text { hand } \\
0 \text { elea }
\end{array} \\
& \mathbb{E}(\hat{p})=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left(\mathbb{A}\left\{x_{i}=\text { head }\right\}\right)=\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}=\text { head }\right)=\frac{1}{N} \sum_{i=1}^{N} p=p \\
& \mathbb{E}\{\mathcal{1}\{x \in A\}\}=\sum_{x \in \mathscr{G}} P_{x}(x) \mathbb{1}\{x \in \mathbb{A}\}=\sum_{x \in A} p_{x}(x)=\mathbb{P}(x \in A)
\end{aligned}
$$

POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with unknown probability $p \in[0,1]$
$\mathbb{P}($ head $)=p$ and $\mathbb{P}($ tail $)=1-p$
Say we flip the coin N times, can we estimate p ?

```
int getRandomNumber()
    return 4; // chosen by fair dice roll.
    return 4, // chosen by fair dice roll.
}
```

https://xkcd.com/221/

Can we relate \hat{p} to p ?

- The law of large numbers tells us that \hat{p} converges in probability to p as N gets large

$$
\forall \epsilon>0 \quad \mathbb{P}(|\hat{p}-p|>\epsilon) \underset{N \rightarrow \infty}{\longrightarrow} 0 .
$$

POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with unknown probability $p \in[0,1]$
$\mathbb{P}($ head $)=p$ and $\mathbb{P}($ tail $)=1-p$
Say we flip the coin N times, can we estimate p ?

```
int getRandomNumber()
    return 4; // chosen by fair dice roll.
    return 4, // chosen by gair dice roll.
}
```

https://xkcd.com/221/

Can we relate \hat{p} to p ?

- The law of large numbers tells us that \hat{p} converges in probability to p as N gets large

$$
\forall \epsilon>0 \quad \mathbb{P}(|\hat{p}-p|>\epsilon) \underset{N \rightarrow \infty}{\longrightarrow} 0
$$

It is possible that \hat{p} is completely off but it is not probable

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown function $f: \mathcal{X} \rightarrow \mathcal{Y}: \mathbf{x} \mapsto y=f(\mathbf{x})$ to learn
2. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ i.i.d. from unknown distribution $P_{\mathbf{x}}$ on \mathcal{X}
- $\left\{y_{i}\right\}_{i=1}^{N}$ are the corresponding labels $y_{i} \in \mathcal{Y} \triangleq \mathbb{R}$

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown function $f: \mathcal{X} \rightarrow \mathcal{Y}: \mathbf{x} \mapsto y=f(\mathbf{x})$ to learn
2. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ i.i.d. from unknown distribution $P_{\mathbf{x}}$ on \mathcal{X}
- $\left\{y_{i}\right\}_{i=1}^{N}$ are the corresponding labels $y_{i} \in \mathcal{Y} \triangleq \mathbb{R}$

3. A set of hypotheses \mathcal{H} as to what the function could be
4. An algorithm ALG to find the best $h \in \mathcal{H}$ that explains f

ANOTHER LEARNING PUZZLE

Which color is the dress?

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown conditional distribution $P_{y \mid \mathbf{x}}$ to learn

- $\widehat{P_{y \mid \mathbf{x}}}$ models $f: \mathcal{X} \rightarrow \mathcal{Y}$ with noise

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown conditional distribution $P_{y \mid \mathbf{x}}$ to learn

- $\widehat{P_{y \mid \mathbf{x}}}$ nodels $f: \mathcal{X} \rightarrow \mathcal{Y}$ with noise

2. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ i.i.d. from distribution $P_{P_{\mathbf{x}}}$ on \mathcal{X}
- $\left\{y_{i}\right\}_{i=1}^{N=}$ are the corresponding labels $y_{i} \sim \overline{P_{y \mid \mathbf{x}=\mathbf{x}_{i}}}$

3. A set of hypotheses \mathcal{H} as to what the function could be
4. An algorithm ALG to find the best $h \in \mathcal{H}$ that explains f

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. An unknown conditional distribution $P_{y \mid \mathbf{x}}$ to learn

- $P_{y \mid \mathbf{x}}$ models $f: \mathcal{X} \rightarrow \mathcal{Y}$ with noise

2. Adataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ i.i.d. from distribution $P_{\mathbf{x}}$ on \mathcal{X}
- $\left\{y_{i}\right\}_{i=1}^{N}$ are the corresponding labels $y_{i} \sim P_{y \mid \mathbf{x}=\mathbf{x}_{i}}$

3. A set of hypotheses \mathcal{H} as to what the function could be
4. An algorithm ALG to find the best $h \in \mathcal{H}$ that explains f

The roles of $P_{y \mid \mathbf{x}}$ and $P_{\mathbf{x}}$ are different

- $P_{y \mid \mathbf{x}}$ is what we want to learn, captures the underlying function and the noise added to it
- $P_{\mathbf{x}}$ models sampling of dataset, need not be learned

YET ANOTHER LEARNING PUZZLE

Assume that you are designing a fingerprint authentication system

- You trained your system with a fancy machine learning system
- The probability of wrongly authenticating is 1%
- The probability of correctly authenticating is 60\%
- Is this a good system?

It depends!

- If you are GTRI, this might be ok (security matters more)
- If you are Apple, this is not acceptable (convenience matters more)

There is an application dependent cost that can affect the design

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ i.i.d. from an unknown distribution $P_{\mathbf{x}}$ on \mathcal{X}

2. An unknown conditional distribution $P_{y \mid \mathbf{x}}$

- $P_{y \mid \mathbf{x}}$ models $f: \mathcal{X} \rightarrow \mathcal{Y}$ with noise
- $\left\{y_{i}\right\}_{i=1}^{N}$ are the corresponding labels $y_{i} \sim P_{y \mid \mathbf{x}=\mathbf{x}_{i}}$

3. A set of hypotheses \mathcal{H} as to what the function could be
4. A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$capturing the "cost" of prediction

$$
l(g(x), y) \geqslant 0 \text { indicates the prodiction qualty }
$$

COMPONENTS OF SUPERVISED MACHINE LEARNING

1. A dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ i.i.d. from an unknown distribution $P_{\mathbf{x}}$ on \mathcal{X}

2. An unknown conditional distribution $P_{y \mid \mathbf{x}}$

- $P_{y \mid \mathbf{x}}$ models $f: \mathcal{X} \rightarrow \mathcal{Y}$ with noise
- $\left\{y_{i}\right\}_{i=1}^{N}$ are the corresponding labels $y_{i} \sim P_{y \mid \mathbf{x}=\mathbf{x}_{i}}$

3. A set of hypotheses \mathcal{H} as to what the function could be
4. A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$capturing the "cost" of prediction
5. An algorithm ALG to find the best $h \in \mathcal{H}$ that explains f

THE SUPERVISED LEARNING PROBLEM
Learning is not memorizing

- Our goal is not to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}

$$
\begin{aligned}
& h: X \longmapsto y: x_{i} \longmapsto y_{i} \quad \text { memaizing } \\
& \sum_{\text {knowing }} D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}
\end{aligned}
$$

THE SUPERVISED LEARNING PROBLEM

Learning is not memorizing

- Our goal is not to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the best $h \in \mathcal{H}$ that accurately predicts values of unseen samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the empirical risk (a.k.a. in-sample error)

$$
\widehat{R}_{N}^{\widehat{R}_{N}(h) \triangleq \frac{1}{N} \sum_{i=1}^{N} \ell(\underbrace{y_{i}}_{\text {datucet size }}, \underbrace{h\left(\mathbf{x}_{i}\right)}_{\text {prediction }})}
$$

THE SUPERVISED LEARNING PROBLEM

Learning is not memorizing

- Our goal is not to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the best $h \in \mathcal{H}$ that accurately predicts values of unseen samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the empirical risk (a.k.a. in-sample error)

$$
\widehat{R}_{N}(h) \triangleq \frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, h\left(\mathbf{x}_{i}\right)\right)
$$

What we really care about is the true risk (a.k.a. out-sample error) $R(h) \triangleq \mathbb{E}_{x y}[\ell(y, h(\mathbf{x}))]$ random variables

THE SUPERVISED LEARNING PROBLEM

Learning is not memorizing

- Our goal is not to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the best $h \in \mathcal{H}$ that accurately predicts values of unseen samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the empirical risk (a.k.a. in-sample error)

$$
\widehat{R}_{N}(h) \triangleq \frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, h\left(\mathbf{x}_{i}\right)\right)
$$

What we really care about is the true risk (a.k.a. out-sample error) $R(h) \triangleq \mathbb{E}_{\mathbf{x} y}[\ell(y, h(\mathbf{x}))]$
Question \#1: Can we generalize?

- For a given h, is $\widehat{R}_{N}(h)$ close to $R(h)$?

Question \#2: Can we learn well?

- The best hypothesis is $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$ but we can only find $h^{*} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_{N}(h)$
- Is $\widehat{R}_{N}\left(h^{*}\right)$ close to $R\left(h^{\sharp}\right)$?
- Is $R\left(h^{\sharp}\right) \approx 0$?

A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

1. Dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ drawn i.i.d. from unknown $P_{\mathbf{x}}$ on \mathcal{X}
- $\left\{y_{i}\right\}_{i=1}^{N}$ labels with $\mathcal{Y}=\{0,1\}$ (binary classification)

2. Unknown $f: \mathcal{X} \rightarrow \mathcal{Y}$, no noise.
3. Finite set of hypotheses $\mathcal{H},|\mathcal{H}|=M<\infty$

A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

1. Dataset $\mathcal{D} \triangleq\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$

- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ drawn i.i.d. from unknown $P_{\mathbf{x}}$ on \mathcal{X}
- $\left\{y_{i}\right\}_{i=1}^{N}$ labels with $\mathcal{Y}=\{0,1\}$ (binary classification)

2. Unknown $f: \mathcal{X} \rightarrow \mathcal{Y}$, no noise.
3. Finite set of hypotheses $\mathcal{H},|\mathcal{H}|=M<\infty$

- $\mathcal{H} \triangleq\left\{h_{i}\right\}_{i=1}^{M}$

4. Binary loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}:\left(y_{1}, y_{2}\right) \mapsto \mathbf{1}\left\{y_{1} \neq y_{2}\right\}$

In this very specific case, the true risk simplifies

$$
R(h) \triangleq \mathbb{E}_{\mathbf{x} y}[\mathbf{1}\{h(\mathbf{x}) \neq y\}]=\mathbb{P}_{\mathbf{x} y}(h(\mathbf{x}) \neq y)
$$

The empirical risk becomes

$$
\widehat{R}_{N}(h)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\left\{h\left(\mathbf{x}_{i}\right) \neq y_{i}\right\}
$$

CAN WE LEARN?

Our objective is to find a hypothesis $h^{*}=\operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_{N}(h)$ that ensures a small risk
For a fixed $h_{j} \in \mathcal{H}$, how does $\widehat{R}_{N}\left(h_{j}\right)$ compares to $R\left(h_{j}\right)$?
Observe that for $h_{j} \in \mathcal{H}$

- The empirical risk is a sum of iid random variables

$$
\widehat{R}_{N}\left(h_{j}\right)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\left\{h_{j}\left(\mathbf{x}_{i}\right) \neq y_{i}\right\}
$$

- $\mathbb{E}_{D}\left[\widehat{R}_{N}\left(h_{j}\right)\right]=R\left(h_{j}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{E}_{D}\left[\mathbb{1}\left\{h_{j}\left(x_{i}\right) \neq g_{i}\right]\right.}{\underset{\substack{x y}}{\mathbb{x}\left(h_{j}(x) \neq g\right)} \triangleq R\left(h_{j}\right)}=R\left(h_{j}\right)$

CAN WE LEARN?

Our objective is to find a hypothesis $h^{*}=\operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_{N}(h)$ that ensures a small risk

For a fixed $h_{j} \in \mathcal{H}$, how does $\widehat{R}_{N}\left(h_{j}\right)$ compares to $R\left(h_{j}\right)$?
Observe that for $h_{j} \in \mathcal{H}$

- The empirical risk is a sum of iid random variables

$$
\widehat{R}_{N}\left(h_{j}\right)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\left\{h_{j}\left(\mathbf{x}_{i}\right) \neq y_{i}\right\}
$$

- $\mathbb{E}\left[\widehat{R}_{N}\left(h_{j}\right)\right]=R\left(h_{j}\right)$

$\mathbb{P}\left(\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right|>\epsilon\right)$ is a statement about the deviation of a normalized sum of iid random variables from its mean

We're in luck! Such bounds, a.k.a, known as concentration inequalities, are a well studied subject

Lemma (Markov's inequality)
Let X be a non-negative real-valued random variable. Then for all $t>0$

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

Proof:

$$
\begin{aligned}
& E(x)=\mathbb{E}(X(\underbrace{\mathbb{1}\{x \geqslant t\}+\mathbb{1}\{x<t\}}_{=1})) \quad\left\{\mathbb{E}(x)=\int_{0}^{+\infty} P_{x}(x) x d x\right. \\
& =\underbrace{\mathbb{E}(x \mathcal{1}\{x \geqslant t\})}_{\geqslant t \mathbb{E}(\mathbb{1}\{x \geqslant t\})}+\underbrace{\mathbb{E}(x \mathcal{1}\{x<t\})}_{\geqslant 0} \\
& \begin{aligned}
(k) & \geqslant t \mathbb{E}(\mathbb{A}\{x \geqslant t) \\
& =E \mathbb{P}(x \geqslant t)
\end{aligned} \\
& \geqslant t \mathbb{P}(x \geq t) \\
& =\underbrace{\int_{0}^{t} p_{x}(x) x d x}_{\geqslant 0}+\underbrace{\int_{t}^{+\infty} p_{t}(x) x d x}_{\geqslant \int_{t}^{+\infty} t p_{x}(x) d x=t \int_{t}^{+\infty} p_{x}(x)} \\
& =t \mathbb{P}(x \geqslant t
\end{aligned}
$$

Lemma (Markov's inequality)
Let X be a non-negative real-valued random variable. Then for all $t>0$

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

Lemma (Chebyshev's inequality)
Let X be a real-valued random variable. Then for all $t>0$

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof: set $Y=(x-\mathbb{E}(x))^{2} ; y$ is non negative

$$
\begin{aligned}
& \mathbb{P}\left(y>t^{2}\right) \leq \frac{\mathbb{E}(y)}{t^{2}} \text { note } \mathbb{E}(y) \xlongequal{=} \mathbb{E}\left((x-\mathbb{E}(x))^{2}\right) \cong \operatorname{Var}(x) \\
& y \geqslant t \Leftrightarrow(x-\mathbb{E}(x))^{2} \geqslant t^{2} \Leftrightarrow|x-\mathbb{E}(x)| \geqslant t \quad(t>0)
\end{aligned}
$$

CONCENTRATION INEQUALITIES: BASICS

LLemma (Markov's inequality)
Let X be a non-negative real-valued random variable. Then for all $t>0$

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

|Lemma (Chebyshev's inequality)
Let X be a real-valued random variable. Then for all $t>0$

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proposition (Weak law of large numbers)
Let $\left\{X_{i}\right\}_{i=1}^{N}$ be i.i.d. real-valued random variables with finite mean μ and finite variance σ^{2}. Then

$$
\mathbb{P}(\left.\underbrace{\frac{1}{N} \sum_{i=1}^{N} X_{i}-(\mu)}_{\text {empltral mean }} \right\rvert\, \geq \epsilon) \leq \frac{\sigma^{2}}{N \epsilon^{2}} \quad \lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} X_{i}-\mu\right| \geq \epsilon\right)=0 .
$$

Prof: apply Chebustor to $\frac{1}{N} \sum_{i=1}^{N} x_{i}$

$$
\begin{equation*}
\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{N} x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \underbrace{}_{\mu}\left(x_{i}\right)=\mu \quad \operatorname{Var}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)=\frac{1}{N^{2}} \operatorname{Van}\left(\sum_{i=1}^{N} x_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \sigma^{2}=\frac{\sigma^{2}}{N} \tag{四}
\end{equation*}
$$

BACK TO LEARNING

By the law of large number, we know that hyuthuss fired

$$
\begin{aligned}
\forall \epsilon>0 \quad \underset{\left.\mathbb{P}_{\left\{\left(x_{i}, y_{i}\right)\right\}}\right\}}{ } & \left(\left|\widehat{R}_{N}\left(h_{j}^{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}\left(\mathbf{1}\left\{h_{j}\left(\mathbf{x}_{1}\right) \neq y_{1}\right\}\right)}{N \epsilon^{2}} \leq \frac{1}{N \epsilon^{2}} \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \underline{\mathbb{E}\left\{h_{j}\left(x_{i}\right) \neq y_{i}\right\}}
\end{aligned}
$$

BACK TO LEARNING

By the law of large number, we know that

$$
\forall \epsilon>0 \quad \underbrace{\mathbb{P}_{\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}}\left(\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right.}_{\leqslant \delta}) \leq \frac{\operatorname{Var}\left(\mathbf{1}\left\{h_{j}\left(\mathbf{x}_{1}\right) \neq y_{1}\right\}\right)}{N \epsilon^{2}} \leq \frac{1}{N \epsilon^{2}} \leq \delta
$$

Given enough data, we can generalize
How much data? $N=\frac{1}{\delta \epsilon^{2}}$ to ensure $\mathbb{P}\left(\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right) \leq \delta$.

BACK TO LEARNING

By the law of large number, we know that

$$
\forall \epsilon>0 \quad \mathbb{P}_{\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}}\left(\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}\left(\mathbf{1}\left\{h_{j}\left(\mathbf{x}_{1}\right) \neq y_{1}\right\}\right)}{N \epsilon^{2}} \leq \frac{1}{N \epsilon^{2}}
$$

Given enough data, we can generalize
How much data? $N=\frac{1}{\delta \epsilon^{2}}$ to ensure $\mathbb{P}\left(\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right) \leq \delta$.
That's not quite enough! We care about $\widehat{R}_{N}\left(h^{*}\right)$ where $h^{*}=\operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_{N}(h)$

- If $M=|\mathcal{H}|$ is large we should expect the existence of $h_{k} \in \mathcal{H}$ such that $\widehat{R}_{N}\left(h_{k}\right) \ll R\left(h_{k}\right)$

$$
\begin{gathered}
\mathbb{P}\left(\left|\widehat{R}_{N}\left(h^{*}\right)-R\left(h^{*}\right)\right| \geq \epsilon\right) \leq \mathbb{P}\left(\exists j:\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right) \\
\mathbb{P}\left(\left|\widehat{R}_{N}\left(h^{*}\right)-R\left(h^{*}\right)\right| \geq \epsilon\right) \leq \frac{M}{N \epsilon^{2}}
\end{gathered}
$$

If we choose $N \geq\left\lceil\frac{M}{\delta \epsilon^{2}}\right\rceil$ we can ensure $\mathbb{P}\left(\left|\widehat{R}_{N}\left(h^{*}\right)-R\left(h^{*}\right)\right| \geq \epsilon\right) \leq \delta$.

- That's a lot of samples!

CONCENTRATION INEQUALITIES: NOT SO BASIC

We can obtain much better bounds than with Chebyshev
Lemma (Hoeffding's inequality)
Let $\left\{X_{i}\right\}_{i=1}^{N}$ be i.i.d. real-valued zero-mean random variables such that $X_{i} \in\left[a_{i} ; b_{i}\right]$ with $a_{i}<b_{i}$. Then for all $\epsilon>0$

$$
\mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} X_{i}\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{2 N^{2} \epsilon^{2}}{\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

In our learning problem

$$
\begin{gathered}
\forall \epsilon>0 \quad \mathbb{P}\left(\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \geq \epsilon\right) \leq 2 \exp \left(-2 N \epsilon^{2}\right) \\
\forall \epsilon>0 \quad \mathbb{P}\left(\left|\widehat{R}_{N}\left(h^{*}\right)-R\left(h^{*}\right)\right| \geq \epsilon\right) \leq 2 M \exp \left(-2 N \epsilon^{2}\right)
\end{gathered}
$$

We can now choose $N \geq\left\lceil\frac{1}{2 \epsilon^{2}}\left(\ln \frac{2 M}{\delta}\right)\right\rceil$
M can be quite large (almost exponential in N) and, with enough data, we can generalize h^{*}.
How about learning $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$?

LEARNING CAN WORK!

|Lemma.

$$
\mid \text { If } \forall j \in \mathcal{H}\left|\widehat{R}_{N}\left(h_{j}\right)-R\left(h_{j}\right)\right| \leq \epsilon \text { then }\left|R\left(h^{*}\right)-R\left(h^{\sharp}\right)\right| \leq 2 \epsilon \text {. }
$$

How do we make $R\left(h^{\sharp}\right)$ small?

- Need bigger hypothesis class \mathcal{H} ! (could we take $M \rightarrow \infty$?)
- Fundamental trade-off of learning

PROBABLY APPROXIMATELY CORRECT LEARNABILITY

Definition. (PAC learnability)
A hypothesis set \mathcal{H} is (agnostic) PAC learnable if there exists a function $\left.N_{\mathcal{H}}:\right] 0 ; 1\left[{ }^{2} \rightarrow \mathbb{N}\right.$ and a learning algorithm such that:

- for very $\epsilon, \delta \in] 0 ; 1[$,
- for every $P_{\mathbf{x}}, P_{y \mid \mathbf{x}}$,
- when running the algorithm on at least $N_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples, the algorithm returns a hypothesis $h \in \mathcal{H}$ such that

$$
\mathbb{P}_{\mathbf{x} y}\left(\left|R(h)-R\left(h^{\sharp}\right)\right| \leq \epsilon\right) \geq 1-\delta
$$

The function $N_{\mathcal{H}}(\epsilon, \delta)$ is called sample complexity
We have effectively already proved the following result
Proposition.
A finite hypothesis set \mathcal{H} is PAC learnable with the Empirical Risk Minimization algorithm and with sample complexity

$$
N_{\mathcal{H}}(\epsilon, \delta)=\left\lceil\frac{2 \ln (2|\mathcal{H}| / \delta)}{\epsilon^{2}}\right\rceil
$$

WHAT IS A GOOD HYPOTHESIS SET?

Ideally we want $|\mathcal{H}|$ small so that $R\left(h^{*}\right) \approx R\left(h^{\sharp}\right)$ and get lucky so that $R\left(h^{*}\right) \approx 0$
In general this is not possible
Remember, we usually have to learn $P_{y \mid \mathbf{x}}$, not a function f

Questions

- What is the optimal binary classification hypothesis class?
- How small can $R\left(h^{*}\right)$ be?

