LEARNING

DR. MATTHIEU R BLOCH

Wednesday, December 1, 2021

1/37

LOGISTICS

General announcements

- Assignment 6 posted (*last assignment*)
- Due December 7, 2021 for bonus, deadline December 10, 2021
- 2 lectures left
- Let me know what's missing
- Assignment 5 grades posted

Reviewing Midterm2 grades one last time

2/37

WHAT'S ON THE AGENDA FOR TODAY?

The learning problem and why we need probabilities.

Lecture notes 17 and 23

Toddlers can do it!

- 1. An unknown function $f:\mathcal{X}
 ightarrow \mathcal{Y}: \mathbf{x} \mapsto y = f(\mathbf{x})$ to learn
 - The formula to distinguish cats from dogs
- 2. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$
 - $\mathbf{x}_i \in \mathcal{X} \triangleq \mathbb{R}^d$: picture of cat/dog
 - $y_i \in \mathcal{Y} riangleq \mathbb{R}$: the corresponding label cat/dog
- 3. A set of hypotheses \mathcal{H} as to what the function could be
 - Example: deep neural nets with AlexNet architecture
- 4. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

 $f: \mathcal{X} \to \mathcal{Y}$

1. An unknown function $f: \mathcal{X}
ightarrow \mathcal{Y}: \mathbf{x} \mapsto y = f(\mathbf{x})$ to learn

The formula to distinguish cats from dogs

- 2. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$
 - $\mathbf{x}_i \in \mathcal{X} \triangleq \mathbb{R}^d$: picture of cat/dog
 - $y_i \in \mathcal{Y} \triangleq \mathbb{R}$: the corresponding label cat/dog
- 3. A set of hypotheses \mathcal{H} as to what the function could be
 - Example: deep neural nets with AlexNet architecture
- 4. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

Terminology:

- $\mathcal{Y} = \mathbb{R}$: *regression* problem
- $|\mathcal{Y}| < \infty$: *classification* problem
- $|\mathcal{Y}| = 2$: binary classification problem

The goal is to *generalize*, i.e., be able to classify inputs we have not seen.

$$f: \mathcal{X} \to \mathbb{Q}$$

$$\mathcal{D} = \{ (\mathbf{x}_1, \dots, \mathbb{Q}) \}$$

 \mathcal{Y}

A LEARNING PUZZLE

Learning seems *impossible* without additional assumptions!

POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with $\mathit{unknown}$ probability $p \in [0,1]$

$$\mathbb{P} ext{ (head)} = p ext{ and } \mathbb{P} ext{ (tail)} = 1-p$$

Say we flip the coin N times, can we estimate p?

$$\hat{p} = rac{igert \# ext{head}}{N}$$

Can we relate \hat{p} to p?

Note: Let
$$\{X_i\}_{i=1}^N$$
 the coin flips $X_i \in \{head, hail\}$ $\forall i \; X_i \; u \; B(p)$
We compute $\hat{p} = \frac{1}{N} \sum_{i=1}^{n} d\{X_i = head\}$
 $= \begin{bmatrix} 1 & if \; X_i = head \\ 0 \; ele \; N \\ 0 \; ele \; N \\ E(\hat{p}) = \frac{1}{N} \sum_{i=1}^{N} E(d\{X_i = head\}) = \frac{1}{N} \sum_{i=1}^{N} P(X_i = head) = \frac{1}{N} \sum_{i=1}^{N} p = p$
 $E\{d\{X \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\} = \sum_{x \in \mathcal{X}} P_x(x) \; d\{x \in d\}\}$

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```

https://xkcd.com/221/

 $\sum_{eA} P_{X}(x) = P(X \in A)$

POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with *unknown* probability $p \in [0,1]$

 \mathbb{P} (head) = p and \mathbb{P} (tail) = 1 - p

Say we flip the coin N times, can we estimate p?

$$\hat{p} = rac{ig \# ext{head}}{N}$$

Can we relate \hat{p} to p?

• The law of large numbers tells us that \hat{p} converges in probability to p as N gets large


```
int getRandomNumber()
   return 4; // chosen by fair dice roll.
               // guaranteed to be random.
```

https://xkcd.com/221/

POSSIBLE VS PROBABLE

Flip a biased coin, lands on head with $\mathit{unknown}$ probability $p \in [0,1]$

 $\mathbb{P} ext{ (head)} = p ext{ and } \mathbb{P} ext{ (tail)} = 1 - p$

Say we flip the coin N times, can we estimate p?

$$\hat{p} = rac{ig \# ext{head}}{N}$$

Can we relate \hat{p} to p?

• The law of large numbers tells us that \hat{p} converges in probability to p as N gets large

$$orall \epsilon > 0 \quad \mathbb{P}\left(\left| \hat{p} - p
ight| > \epsilon
ight) \mathop{\longrightarrow}\limits_{N o \infty} 0.$$

It is *possible* that \hat{p} is completely off but it is not *probable*

```
int getRandomNumber()
   return 4; // chosen by fair dice roll.
                / guaranteed to be random.
```

https://xkcd.com/221/

1. An unknown function $f: \mathcal{X}
ightarrow \mathcal{Y}: \mathbf{x} \mapsto y = f(\mathbf{x})$ to learn

2. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

- $\{\mathbf{x}_i\}_{i=1}^N$ i.i.d. from unknown distribution $P_{\mathbf{x}}$ on \mathcal{X} $\{y_i\}_{i=1}^N$ are the corresponding labels $y_i \in \mathcal{Y} \triangleq \mathbb{R}$

 $f: \mathcal{X} \to \mathcal{Y}$

1. An unknown function $f: \mathcal{X}
ightarrow \mathcal{Y}: \mathbf{x} \mapsto y = f(\mathbf{x})$ to learn

2. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

- $\{\mathbf{x}_i\}_{i=1}^N$ i.i.d. from unknown distribution $P_{\mathbf{x}}$ on \mathcal{X} $\{y_i\}_{i=1}^N$ are the corresponding labels $y_i \in \mathcal{Y} \triangleq \mathbb{R}$
- 3. A set of hypotheses \mathcal{H} as to what the function could be
- 4. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

$$f: \mathcal{X} \to igcap_{\mathbf{x}_1}, igcap_{\mathbf{x}_1}, igcap_{\mathbf{x}_1}, igcap_{\mathbf{x}_1}$$

ANOTHER LEARNING PUZZLE

Which color is the dress?

12/37

1. An unknown conditional distribution $P_{y|\mathbf{x}}$ to learn

$$lacksquare{P_{y|\mathbf{x}}}$$
 models $f:\mathcal{X}
ightarrow\mathcal{Y}$ with noise

 $P_{y|\mathbf{x}}$

- 1. An unknown conditional distribution $P_{y|\mathbf{x}}$ to learn
 - $(P_{y|\mathbf{x}})$ models $f: \mathcal{X} o \mathcal{Y}$ with noise

2. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

- $\{\mathbf{x}_i\}_{i=1}^N$ i.i.d. from distribution $P_{\mathbf{x}}$ on \mathcal{X} $\{y_i\}_{i=1}^N$ are the corresponding labels $y_i \sim P_{y|\mathbf{x}=\mathbf{x}_i}$

3. A set of hypotheses \mathcal{H} as to what the function could be

4. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

- 1. An unknown conditional distribution $P_{y|\mathbf{x}}$ to learn
 - $P_{y|\mathbf{x}}$ models $f: \mathcal{X}
 ightarrow \mathcal{Y}$ with noise

2. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

- $\{\mathbf{x}_i\}_{i=1}^N$ i.i.d. from distribution $P_{\mathbf{x}}$ on \mathcal{X}
- $\{y_i\}_{i=1}^{N}$ are the corresponding labels $y_i \sim P_{y|\mathbf{x}=\mathbf{x}_i}$
- 3. A set of hypotheses \mathcal{H} as to what the function could be
- 4. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

The roles of $P_{y|\mathbf{x}}$ and $P_{\mathbf{x}}$ are *different*

- $P_{y|\mathbf{x}}$ is what we want to learn, captures the underlying function and the noise added to it
- $P_{\mathbf{x}}$ models *sampling* of dataset, need *not* be learned

YET ANOTHER LEARNING PUZZLE

Assume that you are designing a fingerprint authentication system

- You trained your system with a fancy machine learning system
- The probability of wrongly authenticating is 1%
- The probability of correctly authenticating is 60%
- Is this a good system?

It depends!

- If you are GTRI, this might be ok (security matters more)
- If you are Apple, this is not acceptable (convenience matters more)

There is an application dependent *cost* that can affect the design

Biometric authentication system

1. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

• $\{\mathbf{x}_i\}_{i=1}^N$ i.i.d. from an unknown distribution $P_{\mathbf{x}}$ on \mathcal{X}

2. An unknown conditional distribution $P_{y|\mathbf{x}}$

- $P_{y|\mathbf{x}}$ models $f:\mathcal{X}
 ightarrow \mathcal{Y}$ with noise
- $\{y_i\}_{i=1}^N$ are the corresponding labels $y_i \sim P_{y|\mathbf{x}=\mathbf{x}_i}$
- 3. A set of hypotheses \mathcal{H} as to what the function could be
- 4. A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ capturing the "cost" of prediction

l(g(x), y) > O indicates the publiction quality

Final supervised learning model

1. A dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

• $\{\mathbf{x}_i\}_{i=1}^N$ i.i.d. from an unknown distribution $P_{\mathbf{x}}$ on \mathcal{X}

2. An unknown conditional distribution $P_{y|\mathbf{x}}$

- $P_{y|\mathbf{x}}$ models $f: \mathcal{X}
 ightarrow \mathcal{Y}$ with noise
- $\{y_i\}_{i=1}^N$ are the corresponding labels $y_i \sim P_{y|\mathbf{x}=\mathbf{x}_i}$
- 3. A set of hypotheses \mathcal{H} as to what the function could be
- 4. A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ capturing the "cost" of prediction
- 5. An *algorithm* **ALG** to find the best $h \in \mathcal{H}$ that explains f

Final supervised learning model

Learning is not *memorizing*

• Our goal is *not* to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}

Learning is not *memorizing*

- Our goal is *not* to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the best $h \in \mathcal{H}$ that accurately predicts values of unseen samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the *empirical risk* (a.k.a. *in-sample* error)

Learning is not *memorizing*

- Our goal is *not* to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the *best* $h \in \mathcal{H}$ that accurately *predicts* values of *unseen* samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the *empirical risk* (a.k.a. *in-sample* error)

$$\widehat{R}_N(h) riangleq rac{1}{N} \sum_{i=1}^N \ell(y_i, h(\mathbf{x}_i))$$

What we really care about is the *true risk* (a.k.a. *out-sample* error) $R(h) \triangleq \mathbb{E}_{xy}[\ell(y, h(x))]$

Learning is not *memorizing*

- Our goal is *not* to find $h \in \mathcal{H}$ that accurately assigns values to elements of \mathcal{D}
- Our goal is to find the *best* $h \in \mathcal{H}$ that accurately *predicts* values of *unseen* samples

Consider hypothesis $h \in \mathcal{H}$. We can easily compute the *empirical risk* (a.k.a. *in-sample* error)

$$\widehat{R}_N(h) riangleq rac{1}{N} \sum_{i=1}^N \ell(y_i,h(\mathbf{x}_i))$$

What we really care about is the *true risk* (a.k.a. *out-sample* error) $R(h) \triangleq \mathbb{E}_{\mathbf{x}y} [\ell(y, h(\mathbf{x}))]$ *Question #1:* Can we generalize?

• For a given h, is $\widehat{R}_N(h)$ close to R(h)?

Question #2: Can we learn *well*?

- The *best* hypothesis is $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$ but we can only find $h^* \triangleq \operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_N(h)$
- Is $\widehat{R}_N(h^*)$ close to $R(h^{\sharp})$?
- Is $R(h^{\sharp}) \approx 0$?

A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

- 1. Dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$
 - $\{\mathbf{x}_i\}_{i=1}^N$ drawn i.i.d. from unknown $P_{\mathbf{x}}$ on \mathcal{X}
 - $\{y_i\}_{i=1}^{\tilde{N}}$ labels with $\mathcal{Y} = \{0,1\}$ (binary classification)
- 2. Unknown $f: \mathcal{X} \to \mathcal{Y}$, no noise.
- 3. Finite set of hypotheses $\mathcal{H}, |\mathcal{H}|=M<\infty$

A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

1. Dataset
$$\mathcal{D} riangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$$

- $\{\mathbf{x}_i\}_{i=1}^N$ drawn i.i.d. from unknown $P_{\mathbf{x}}$ on \mathcal{X}
- $\{y_i\}_{i=1}^{N}$ labels with $\mathcal{Y} = \{0, 1\}$ (binary classification)

2. Unknown $f: \mathcal{X} \to \mathcal{Y}$, no noise.

3. Finite set of hypotheses $\mathcal{H}, |\mathcal{H}| = M < \infty$

•
$$\mathcal{H} riangleq \{h_i\}_{i=1}^M$$

4. Binary loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+: (y_1, y_2) \mapsto \mathbf{1}\{y_1 \neq y_2\}$

In this very specific case, the true risk simplifies

$$R(h) riangleq \mathbb{E}_{\mathbf{x}y}\left[\mathbf{1}\{h(\mathbf{x})
eq y\}
ight] = \mathbb{P}_{\mathbf{x}y}\left(h(\mathbf{x})
eq y
ight)$$

The empirical risk becomes

$$\widehat{R}_N(h) = rac{1}{N}\sum_{i=1}^N \mathbf{1}\{h(\mathbf{x}_i)
eq y_i\}$$

Our objective is to find a hypothesis $h^* = \mathrm{argmin}_{h \in \mathcal{H}} \widehat{R}_N(h)$ that ensures a small risk

For a fixed $h_j \in \mathcal{H}$, how does $\widehat{R}_N(h_j)$ compares to $R(h_j)$?

Observe that for $h_j \in \mathcal{H}$

The empirical risk is a sum of iid random variables

$$\widehat{R}_{N}(h_{j}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\{h_{j}(\mathbf{x}_{i}) \neq y_{i}\}$$

$$= \mathbb{E}_{\mathbf{Z}}\left[\widehat{R}_{N}(h_{j})\right] = R(h_{j}) = \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{E}_{\mathbf{Z}}\left[\mathbf{1}\{h_{j}(\mathbf{x}_{i})\neq y_{i}\right]}{\left[\mathbf{1}\{h_{j}(\mathbf{x}_{i})\neq y_{i}\right]} = \mathcal{K}(h_{j})$$

Our objective is to find a hypothesis $h^* = \mathrm{argmin}_{h \in \mathcal{H}} \widehat{R}_N(h)$ that ensures a small risk

For a fixed $h_i \in \mathcal{H}$, how does $\widehat{R}_N(h_i)$ compares to $R(h_i)$?

Observe that for $h_i \in \mathcal{H}$

• The empirical risk is a sum of iid random variables

$$\widehat{R}_N(h_j) = rac{1}{N}\sum_{i=1}^N \mathbf{1}\{h_j(\mathbf{x}_i)
eq y_i\}$$

•
$$\mathbb{E}\left[\widehat{R}_N(h_j)
ight]=R(h_j)$$

 $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)
ight|>\epsilon
ight)$ is a statement about the deviation of a normalized sum of iid random variables from its mean

We're in luck! Such bounds, a.k.a, known as *concentration inequalities*, are a well studied subject

CONCENTRATION INEQUALITIES: BASICS

Lemma (Markov's inequality)

Let X be a *non-negative* real-valued random variable. Then for all t>0

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

$$\mathbb{P}(X \ge t) \le \mathbb{E}(X) = \mathbb{E}(X(-\frac{1}{X} \ge t] + \frac{1}{X} \le t]))$$

$$= \frac{1}{2}$$

$$= \frac{\mathbb{E}(X - \frac{1}{X} \ge t]}{(x)} + \frac{\mathbb{E}(X - \frac{1}{X} < t])}{\ge 0}$$

$$= \int_{0}^{b} p_{X}(x)$$

$$= \int_{0}^{b} p_{X}(x)$$

$$= \int_{0}^{b} p_{X}(x)$$

$$\ge \mathbb{E}(X \ge t)$$

$$\ge \mathbb{E}(X \ge t)$$

x dx

1×d×+) E Pranda $\Rightarrow \int E_{p_x(x)dx} = E$ +00 (x (r) 0 = E P(x> E

CONCENTRATION INEQUALITIES: BASICS

Lemma (Markov's inequality)

Let X be a *non-negative* real-valued random variable. Then for all t > 0

$$\mathbb{P}\left(X\geq t
ight)\leq rac{\mathbb{E}\left[X
ight]}{t}.$$

Lemma (Chebyshev's inequality)

Let X be a real-valued random variable. Then for all t>0

$$\mathbb{P}\left(|X - \mathbb{E}[X]| \ge t\right) \le \frac{\operatorname{Var}(X)}{t^2}.$$

Proof: set $Y = (X - \mathbb{E}(X))^2$; Y is non negative

$$\mathbb{P}(Y > \mathbb{E}) \le \frac{\mathbb{E}(Y)}{\mathbb{E}^2} \quad \text{note} \quad \mathbb{E}(Y) \stackrel{\circ}{=} \mathbb{E}((X - \mathbb{E}(X))^2) \stackrel{\circ}{=} \mathbb{Var}(X)$$

$$\mathbb{P}(Y > \mathbb{E}) \le \frac{\mathbb{E}(Y)}{\mathbb{E}^2} \quad \text{note} \quad \mathbb{E}(Y) \stackrel{\circ}{=} \mathbb{E}((X - \mathbb{E}(X))^2) \stackrel{\circ}{=} \mathbb{Var}(X)$$

$$\mathbb{P}(Y > \mathbb{E}) \le \mathbb{E}(X - \mathbb{E}(X))^2 > \mathbb{E}^2 \iff |X - \mathbb{E}(X)| \ge \mathbb{E} \quad (E > 0)$$

$$\mathbb{P}(Y > \mathbb{E}) = \mathbb{P}(X - \mathbb{E}(X))^2 > \mathbb{E}^2 \iff |X - \mathbb{E}(X)| \ge \mathbb{E} \quad (E > 0)$$

CONCENTRATION INEQUALITIES: BASICS

Lemma (Markov's inequality)

Let X be a *non-negative* real-valued random variable. Then for all t > 0

$$\mathbb{P}\left(X\geq t
ight)\leq rac{\mathbb{E}\left[X
ight]}{t}.$$

Lemma (Chebyshev's inequality)

Let X be a real-valued random variable. Then for all t > 0

$$\mathbb{P}\left(\left| X - \mathbb{E}\left[X
ight]
ight| \geq t
ight) \leq rac{{{\operatorname{Var}}\left(X
ight)}}{{t^2}}$$

Proposition (Weak law of large numbers)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued random variables with finite mean μ and finite variance σ^2 . Then $\mathbb{P}\left(\left| rac{1}{N} \sum_{i=1}^N X_i - \mu
ight| \geq \epsilon
ight) \leq rac{\sigma^2}{N\epsilon^2} \qquad \lim_{N o \infty} \mathbb{P}\left(\left| rac{1}{N} \sum_{i=1}^N X_i
ight|$ emptrical mean

$$-\mu ig| \geq \epsilon ig) = 0.$$

Boof: apply Chebysher to 1 ZX. $E(\frac{1}{2}X_{i}) = \frac{1}{10}\sum_{i=1}^{N}E(X_{i}) = \mu$ $V_{an}\left(\frac{1}{N}\sum_{i=1}^{N}X_{i}\right) = \frac{1}{N^{2}}V_{an}\left(\sum_{i=1}^{N}X_{i}\right) = \frac{1}{N^{2}}\sum_{i=1}^{N}\sigma^{2} = \frac{\sigma^{2}}{N}$

17

BACK TO LEARNING

By the law of large number, we know that $\forall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}} \left(\left| \widehat{R}_N(h_j) - R(h_j) \right| \ge \epsilon \right) \le \frac{\operatorname{Var} \left(\mathbf{1}\{h_j(\mathbf{x}_1) \neq y_1\} \right)}{N\epsilon^2} \le \frac{1}{N\epsilon^2}$

BACK TO LEARNING

By the law of large number, we know that

$$orall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}} \left(\left| \widehat{R}_N(h_j) - R(h_j) \right| \ge \epsilon
ight) \le rac{\mathrm{Var}\left(\mathbf{1}\{h_j(\mathbf{x}_1) > N\epsilon^2 + N\epsilon^2$$

Given enough data, we can *generalize*

How much data? $N=rac{1}{\delta\epsilon^2}$ to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)
ight|\geq\epsilon
ight)\leq\delta.$

 $rac{1}{1}
eq y_1 \}) \leq rac{1}{N\epsilon^2}
eq arsigma$

By the law of large number, we know that

$$egin{aligned} orall \epsilon > 0 & \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}}\left(\left| \widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \leq rac{\mathrm{Var}\left(\mathbf{1}\{h_j(\mathbf{x}_1)
eq y_1\}
ight)}{N\epsilon^2} \leq rac{1}{N\epsilon^2} \end{aligned}$$

Given enough data, we can *generalize*

How much data? $N=rac{1}{\delta\epsilon^2}$ to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)
ight|\geq\epsilon
ight)\leq\delta.$ That's not quite enough! We care about $\widehat{R}_N(h^*)$ where $h^* = \mathrm{argmin}_{h \in \mathcal{H}} \widehat{R}_N(h)$ • If $M=|\mathcal{H}|$ is large we should expect the existence of $h_k\in\mathcal{H}$ such that $\widehat{R}_N(h_k)\ll R(h_k)$ $\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq \mathbb{P}\left(\exists j: \left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight)$ $\mathbb{P}\left(\left| \widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq rac{M}{N \epsilon^2}$ If we choose $N \geq \lceil rac{M}{\delta \epsilon^2} \rceil$ we can ensure $\mathbb{P}\left(\left| \widehat{R}_N(h^*) - R(h^*) \right| \geq \epsilon \right) \leq \delta$.

That's a lot of samples!

CONCENTRATION INEQUALITIES: NOT SO BASIC

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i \in [a_i; b_i]$ with $a_i < b_i$. Then for all $\epsilon > 0$

$$\mathbb{P}\left(\left| rac{1}{N} \sum_{i=1}^N X_i
ight| \geq \epsilon
ight) \leq 2 \exp\left(-rac{2N^2 \epsilon^2}{\sum_{i=1}^N (b_i - a_i)^2}
ight)$$

In our learning problem

$$egin{aligned} &orall\epsilon < 0 & \mathbb{P}\left(\left| \widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \leq 2\exp(-2k) \ &orall \epsilon > 0 & \mathbb{P}\left(\left| \widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq 2M\exp(-2k) \ & o \left[\left| \widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq 2M\exp(-2k) \end{aligned}$$

We can now choose $N \geq \lceil rac{1}{2\epsilon^2} \left(\ln rac{2NI}{\delta}
ight)
vert$

M can be quite large (almost exponential in N) and, with enough data, we can generalize h^* . How about learning $h^{\sharp} \triangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$?

$N\epsilon^2)$

$(2N\epsilon^2)$

Lemma.

If
$$orall j \in \mathcal{H} \left| \widehat{R}_N(h_j) - R(h_j)
ight| \leq \epsilon$$
 then $\left| R(h^*) - R(h^{\sharp})
ight| \leq 2\epsilon.$

How do we make $R(h^{\sharp})$ small?

- Need bigger hypothesis class \mathcal{H} ! (could we take $M o \infty$?)
- Fundamental trade-off of learning

35/37

PROBABLY APPROXIMATELY CORRECT LEARNABILITY

Definition. (PAC learnability)

A hypothesis set $\mathcal H$ is (agnostic) PAC learnable if there exists a function $N_{\mathcal H}:]0; 1[^2 o \mathbb N$ and a learning algorithm such that:

- for very $\epsilon, \delta \in]0; 1[$,
- for every $P_{\mathbf{x}}, P_{y|\mathbf{x}},$
- when running the algorithm on at least $N_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples, the algorithm returns a hypothesis $h \in \mathcal{H}$ such that

$$\mathbb{P}_{\mathbf{x}y}\left(\left|R(h)-R(h^{\sharp})
ight|\leq\epsilon
ight)\geq1-\delta$$

The function $N_{\mathcal{H}}(\epsilon, \delta)$ is called sample complexity

We have effectively already proved the following result

Proposition.

A finite hypothesis set \mathcal{H} is PAC learnable with the Empirical Risk Minimization algorithm and with sample complexity

$$N_{\mathcal{H}}(\epsilon,\delta) = \lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ceil$$

WHAT IS A GOOD HYPOTHESIS SET?

Ideally we want $|\mathcal{H}|$ small so that $R(h^*)pprox R(h^{\sharp})$ and get lucky so that $R(h^*)pprox 0$ In general this is *not* possible

Remember, we usually have to learn $P_{y|\mathbf{x}}$, not a function f

Questions

- What is the optimal binary classification hypothesis class?
- How small can $R(h^*)$ be?