Prof. Matthieu Bloch
Monday, October 28, 2024
Every complex matrix \(\matA\) has at least one complex eigenvector and every real symmetrix matrix has real eigenvalues and at least one real eigenvector.
Every matrix \(\matA\in\bbC^{n\times n}\) is unitarily similar to an upper triangular matrix, i.e., \[ \bfA = \bfV\boldsymbol{\Delta}\bfV^\dagger \] with \(\boldsymbol{\Delta}\) upper triangular and \(\bfV^\dagger=\bfV^{-1}\).
Every hermitian matrix is unitarily similar to a real-valued diagonal matrix.
Let \(\matA\in\bbR^{m\times n}\) with \(\text{rank}(\matA)=r\). Then \(\matA=\matU\boldsymbol{\Sigma}\matV^T\) where
\[ \boldsymbol{\Sigma}\eqdef\mat{cccc}{\sigma_1&0&0&\cdots\\0&\sigma_2&0&\cdots\\\vdots&&\ddots&\\0&\cdots&\cdots&\sigma_r} \] and \(\sigma_1\geq\sigma_2\geq\cdots\geq\sigma_r>0\). The \(\sigma_i\) are called the singular values
We say that \(\matA\) is full rank is \(r=\min(m,n)\)
We can write \(\matA=\sum_{i=1}^r\sigma_i\vecu_i\vecv_i^\intercal\)
The solution of \[ \min_{\bfx\in\bbR^n}\norm[2]{\vecx}^2\text{ such that } \matA^\intercal\matA\vecx = \matA^\intercal\vecy \] is \[ \hat{\vecx} = \matV\boldsymbol{\Sigma}^{-1}\matU^\intercal\vecy = \sum_{i=1}^r\frac{1}{\sigma_i}\dotp{\vecy}{\vecu_i}\vecv_i \] where \(\matA=\matU\boldsymbol{\Sigma}\matV^T\) is the SVD of \(\matA\).
We can separate the error analysis into two components \[ \hat{\vecx}-\vecx_0 = \underbrace{\matA^+\matA\vecx_0-\vecx_0}_{\text{null space error}} + \underbrace{\matA^+\vece}_{\text{noise error}} \]
We will express the error in terms of the SVD \(\matA=\matU\boldsymbol{\Sigma}\matV^\intercal\) With
The null space error is given by \[ \norm[2]{\matA^+\matA\vecx_0-\vecx_0}^2=\sum_{i=r+1}^n\abs{\dotp{\vecv_i}{x_0}}^2 \]
The noise error is given by \[ \norm[2]{\matA^+\vece}^2=\sum_{i=1}^r \frac{1}{\sigma_i^2}\abs{\dotp{\vece}{\vecu_i}}^2 \]
How do we mitigate the effect of small singular values in reconstruction? \[ \hat{\vecx} = \matV\boldsymbol{\Sigma}^{-1}\matU^\intercal\vecy = \sum_{i=1}^r\frac{1}{\sigma_i}\dotp{\vecy}{\vecu_i}\vecv_i \]
Truncate the SVD to \(r'<r\) \[ \matA_t\eqdef \sum_{i=1}^{r'}\sigma_i\vecu_i\vecv_i^\intercal\qquad\matA_t^+ = \sum_{i=1}^{r'}\frac{1}{\sigma_i}\vecu_i\vecv_i^\intercal \]
Reconstruct \(\hat{\vecx_t} = \sum_{i=1}^{r'}\frac{1}{\sigma_i}\dotp{\vecy}{\vecu_i}\vecv_i=\matA_t\)
Regularization means changing the problem to solve \[ \min_{\vecx\in\bbR^n}\norm[2]{\vecy-\matA\vecx}^2+\lambda\norm[2]{\vecx}^2\qquad\ \lambda>0 \]
The solution is \[ \hat{\vecx} = (\matA^\intercal\matA+\lambda\matI)^{-1}\matA^\intercal\vecy = \matV(\boldsymbol{\Sigma}^2+\lambda\matI)^{-1}\boldsymbol{\Sigma}\matU^\intercal\vecy \]
We have seen several solutions to systems of linear equations \(\matA\vecx=\vecy\) so far
Extension: constrained least-squares \[ \min_{\vecx\in\bbR^n}\norm[2]{\vecy-\matA\vecx}^2\text{ s.t. } \vecx=\matB\vecalpha\text{ for some }\vecalpha \]
All these problems involve a symmetric positive definite system of equations.