Prof. Matthieu Bloch
Wednesday, November 13, 2024
Consider a Gaussian random vector \(\bfX\sim\calN(\mathbf{0},\matR)\), i.e., \[ p(\vecx) = \frac{1}{(2\pi)^{n/2}\sqrt{\det{\matR}}}\exp\left(-\bfx^T\matR^{-1}\bfx\right) \]
Assume that we we write \[ \bfX = \left[\begin{array}{c}\bfX_o\\\bfX_h\end{array}\right]\qquad\matR = \left[\begin{array}{cc}\bfR_o&\matR_{oh}\\ \matR_{oh}^T&\matR_{h}\end{array}\right] \]
The conditional density of \(\matX_h|\matX_o=\vecx_o\) is a Normal distribution with mean and covariance matrix \[ \bfmu = \matR_{oh}^T\matR_o^{-1}\vecx_o \] \[ \mathbf{\Sigma} = \matR_h - \matR_{oh}^T\matR_o^{-1}\matR_{oh} \]